
A Note on Multilinear Polynomial Evaluation

Bryan R. Gillespie∗

Department of Mathematics
Colorado State University
Fort Collins, CO, U.S.A.

Updated February 23, 2023

In the following we fix a field F, which may be thought of as a familiar example such as
the real numbers or the integers modulo a prime without sacrificing generality. Recall that
a polynomial p in variables x1, . . . , xk over the field F is a formal sum of the form

p(x1, . . . , xk) =
∑
α∈Nk

cαx
α,

where each monomial xα, α = (α1, . . . , αk) represents the product xα1
1 . . . xαk

k , and the
coefficients cα ∈ F are nonzero for only finitely many exponent vectors α. The collection
of these polynomials is a polynomial ring denoted F[x1, . . . , xk].

If k = 1 then p is called a univariate polynomial with degree equal to the largest d
such that c(d) is nonzero, or −∞ if p is the zero polynomial with all coefficients equal to zero.

If k > 1 then p is called a k-variate or multivariate polynomial with total degree
equal to the largest d such that cα is nonzero for some tuple α whose components sum to
d, or −∞ if p is the zero polynomial. The degree of a multivariate polynomial in terms of
a variable xj is defined as the largest d such that cα is nonzero for some tuple α whose j-th
component is d, or −∞ if p is the zero polynomial.

The evaluation of a polynomial p at a point a = (a1, . . . , ak) ∈ Fk is the value p(a) ∈ F
obtained by substituting ai for each variable xi in the formal sum of p and evaluating the
resulting algebraic expression. This is well-defined because p has only finitely many nonzero
coefficients.

In this note, we will focus on a particular class of polynomials which are useful in many
computational applications, the multilinear polynomials.

1 Multilinear Polynomials

A polynomial p ∈ R = F[x1, . . . , xk] is called multilinear if for each j, the polynomial has
degree at most 1 as a polynomial in xj. The space ML(R) of multilinear polynomials in R

∗Email: Bryan.Gillespie@colostate.edu

1

mailto:Bryan.Gillespie@colostate.edu


is a 2k-dimensional F-vector subspace of R which is spanned by the square-free monomials
xα, α ∈ {0, 1}k. In particular, a canonical representation for a multilinear polynomial is
the collection of its coefficients when (uniquely) written as a sum of square-free monomials.
This representation is called the monomial representation of p, which we denote by
Monom(p).

We will discuss several algorithms for efficiently evaluating multilinear polynomials. As
a warm-up, we begin with the most straightforward algorithm, specialized to the monomial
representation. Subsequently, we will extend our scope to a parametrized class of bases for
ML(R) for which our algorithms will work equally well, which will include both the monomial
basis representation and the important Lagrange basis representation as special cases.

Algorithm 1 Evaluating a multilinear polynomial p with monomial representation

1 function Eval(c←Monom(p), r : Fk) → F
2 acc : F ← 0
3 for α ∈ {0, 1}k do
4 prod ← cα ·

∏
i:αi=1 ri

5 acc ← acc+ prod

6 return acc

Algorithm 1 simply evaluates each monomial term of p in sequence, and adds the result
to an accumulator to collect the final sum. A simple count shows that the algorithm uses
k2k−1 field multiplications and 2k field additions, so for a polynomial with n = 2k coefficients,
the algorithm runs in O(n log n) time and constant space. We will wait to fill in more details
until we present Algorithm 2, which generalizes the above.

We now define a general class of vector space bases for the space ML(R) of multilinear
polynomials, each instance of which provides a way to represent multilinear polynomials by
recording the vector coefficients in terms of the basis. The building blocks for these bases are
pairs of linear polynomials a+ bx, c+dx satisfying the condition ad− bc ̸= 0. This condition
ensures that the two polynomials are linearly independent over F, and in particular this
allows us to represent the polynomials 1 and x as a linear combination:(

a b
c d

)−1(
a+ bx
c+ dx

)
=

(
a b
c d

)−1(
a b
c d

)(
1
x

)
=

(
1
x

)
.

For each i ∈ {1, . . . , k}, let ai, bi, ci, di ∈ F with aidi− bici ̸= 0, and for α ∈ {0, 1}k, define
the basis polynomial Bα by

Bα(x) :=
k∏

i=1

(
(1− αi)(ai + bixi) + αi(ci + dixi)

)
. (1)

In other words, Bα is a product of univariate linear polynomials, one for each variable
xi, where a value of 0 for αi selects the polynomial ai + bixi, and a value of 1 for αi selects
the polynomial ci + dixi. We can the show the following.

Theorem 1. The collection of polynomials
(
Bα

)
α∈{0,1}k is an F-basis of the space of multi-

linear polynomials in F[x1, . . . , xk].

2



Proof. From the form of Equation 1, it is clear that each of the polynomials Bα is multilinear.
It is thus sufficient to represent an arbitrary square-free monomial xβ as a linear combination
of the polynomials Bα. For j ∈ {0, . . . , k} and α ∈ {0, 1}j, let

B(j)
α :=

j∏
i=1

(
(1− αi)(ai + bixi) + αi(ci + dixi)

) k∏
i=j+1

xβi

i .

We see that each polynomial B
(k)
α is just the basis polynomial Bα, and that the single

polynomial B
(0)
() is the target monomial xβ. We will show that for 1 ≤ j ≤ k, the polynomials

B
(j−1)
α can be expressed as a linear combination of the polynomials B

(j)
α , from which the result

follows.
As mentioned above, because ajdj − bjcj ̸= 0, there are coefficients uj, vj ∈ F such that

uj(ajxj+bj)+vj(cjxj+dj) = xβj . Then, writing αb for the concatenation of α with b ∈ {0, 1},
we can see that

B(j−1)
α = ujB

(j)
α0 + vjB

(j)
α1 .

This expression holds for arbitrary α ∈ {0, 1}j−1, so the result follows.

We will call a polynomial basis B = (Bα) as defined above a multiaffine basis of the
space of multilinear polynomials. In particular, each multiaffine basis B gives a unique
representation for multilinear polynomials by listing the coefficients when written as a linear
combination of the elements of B. Given a basis B, we write Repr(p,B) for the B-coefficient
representation of a multilinear polynomial p.

The multiaffine basis polynomials include as a special case the standard monomial basis,
by setting (

ai bi
ci di

)
=

(
1 0
0 1

)
for each i.

Another important class of bases are the Lagrange bases, which represent polynomials in
terms of their evaluations at a fixed structured collection of points. The binary Lagrange
basis polynomials (Lα)α∈{0,1}k are given by

Lα(x1, . . . , xk) :=
k∏

i=1

(
(1− αi)(1− xi) + αixi

)
,

which in particular is also a special case of the multiaffine basis polynomials, with(
ai bi
ci di

)
=

(
1 −1
0 1

)
for each i.

The Lagrange basis polynomial Lα evaluates to 1 at the point α, and to 0 at every other
binary input. In particular, this means that a multilinear polynomial p =

∑
β∈{0,1}k cβLβ

evaluates to the coefficient cα for each binary input α. We write Lagrange(p) to represent
the collection Repr(p, L) of coefficients representing a multilinear polynomial p in this basis,
called the (binary) Lagrange representation of p.

3



2 Streaming Evaluation

Next we will discuss approaches for evaluating multilinear polynomials which can be used
when the coefficients are streamed, meaning that they may only be accessed one at a
time, and in an order which is not controlled by the algorithm. We begin with the direct
generalization of Algorithm 1 to multilinear polynomials represented in terms of a multiaffine
basis.

Algorithm 2 Evaluating a multilinear polynomial p over multiaffine basis polynomials B

1 function Eval(c← Repr(p,B), r : Fk) → F
2 s : Fk ← (ai + biri for i ∈ [1 .. k]) ▷ Evaluate B-basis product terms
3 t : Fk ← (ci + diri for i ∈ [1 .. k])

4 acc : F ← 0 ▷ Main evaluation loop
5 for α ∈ {0, 1}k do
6 prod ← cα ·

∏
i:αi=0 si ·

∏
i:αi=1 ti

7 acc ← acc+ prod

8 return acc

Theorem 2. Algorithm 2 computes the evaluation of a k-variate multilinear polynomial,
represented as n = 2k coefficients over a multiaffine basis B, and permits streaming input of
these coefficients in arbitrary order. The algorithm uses O(n log n) time and O(log n) space,
and in particular requires k · 2k +O(k) field multiplications and 2k +O(k) field additions.

Proof. Correctness is clear since the algorithm simply accumulates the appropriate linear
combination of the basis polynomials Bα to represent p(r). This sum does not depend
on the order in which the indices α are visited because addition is commutative, so the
coefficients may be streamed in arbitrary order.

A product of j ≥ 1 field elements may be naively computed using j − 1 field multiplica-
tions, so line 6 computes prod using exactly k multiplication operations per iteration of the
loop, yielding k · 2k multiplications in total. The loop also requires one addition operation
per iteration, giving 2k additions in total. Finally, 2k additions and multiplications are used
by the initialization operations on lines 2 and 3, yielding the desired totals.

The computation time is dominated by the k · 2k = n log n field multiplications, and the
space usage is dominated by the 2k = 2 log n field elements used to store the product terms
of the basis polynomials Bα. This yields the desired time and space bounds.

Remark 3. Algorithm 2 approximately doubles the number of multiplication operations
needed when compared to Algorithm 1, which is specialized for the monomial basis, because
each iteration of the main loop must take a product of k + 1 terms, as opposed to the only
on average k/2 + 1 terms needed for the monomial basis. This factor of 2 can be regained
at the cost of some complexity with the following modifications:

• Precompute:

– An index set I ← [i : si ̸= 0]

4



– An initial product term p0 ←
∏

i∈I si ·
∏

i/∈I ti

– Monomial terms m← (s−1
i ti : i ∈ I)

• Skip the main loop whenever αi = 0 for any i /∈ I.

• Compute prod as the product: cα · p0 ·
∏

i∈I:αi=1 mi.

After implementing the above, the algorithm requires at most (k + 2)2k−1 + 4k field multi-
plications and k field inversions, which reduces the multiplicative order of magnitude to that
of the simplified monomial algorithm.

Next we present an alternate approach that makes a space-time tradeoff to speed up
the computation. In the following, we will write Int(α) for the integer n =

∑k
i=1 αi2

i−1

corresponding to a binary tuple α ∈ {0, 1}k, and Bink(n) for the inverse operation.

Algorithm 3 Evaluating a multilinear polynomial p over multiaffine basis polynomials B,
making a space-time tradeoff

1 function Eval(c← Repr(p,B), r : Fk) → F
2 s : Fk ← (ai + biri for i ∈ [1 .. k]) ▷ Evaluate B-basis product terms
3 t : Fk ← (ci + diri for i ∈ [1 .. k])

4 basis : Array2k(F) ← [1,−, · · · ,−] ▷ Precompute B-basis polynomials at r
5 for i← [1 .. k] do
6 for j ← [0 .. 2i−1) do
7 prev ← basis[j]
8 basis[j] ← sj · prev
9 basis[j + 2i−1] ← tj · prev

10 acc : F ← 0 ▷ Main evaluation loop
11 for α ∈ {0, 1}k do
12 prod ← cα · basis[Int(α)]
13 acc ← acc+ prod

14 return acc

Theorem 4. Algorithm 3 computes the evaluation of a k-variate multilinear polynomial,
represented as n = 2k coefficients over a multiaffine basis B, and permits streaming input of
these coefficients in arbitrary order. The algorithm uses O(n) time and O(n) space, and in
particular requires 3 ·2k+O(k) field multiplications, 2k+O(k) field additions, and 2k+O(k)
field elements of memory.

Proof. Algorithm 3 works exactly like Algorithm 2 except that it precomputes and stores
in memory the evaluations of the B-basis polynomials at input r. The main evaluation
loop again is a simple sum taken over the indices α, so the polynomial coefficients may be
streamed in arbitrary order.

5



Correctness of the algorithm thus follows once we argue that: after running the loop
starting on Line 5, the array basis holds the product

∏
i:αi=0 si ·

∏
i:αi=1 ti at index Int(α)

for each α ∈ {0, 1}k. To this end, let B(i) be the i-variate multilinear basis consisting of the

2i choices of products of the B-basis product terms for x1, . . . , xi. Then B
(i−1)
α may be used

to construct B
(i)
α0 and B

(i)
α1 by

B
(i)
α0 = (ai + bixi)B

(i−1)
α ,

B
(i)
α1 = (ci + dixi)B

(i−1)
α .

In particular, iteration i of the loop computes the entries of B(i) evaluated at (r1, . . . , ri)
using the entries of B(i−1) evaluated at (r1, . . . , ri−1). Thus by the end of the loop, all of the
terms of the basis B = B(k) have been computed.

For a tally of arithmetic operations, the initialization of s and t requires 2k field additions
and multiplications, and the main evaluation loop requires 2k field additions and multipli-
cations. When precomputing the B-basis polynomials, the inner loop repeats 2i−1 times for
each i = 1, . . . , k, for a total of 2k− 1 repetitions, giving 2 · 2k− 2 field multiplications. This
gives 3 ·2k+2k−2 = 3 ·2k+O(k) field multiplications and 2k+2k = 2k+O(k) field additions
in total, as required.

The space used by the algorithm is dominated by the basis array, which uses 2k field
elements. An additional 2k+O(1) field elements of space are required to store s, t and other
incidental variables, giving the desired O(k) error bound.

The O(n) time and space bounds follow immediately from the above.

Remark 5. As was the case for Algorithm 2, the implementation of Algorithm 3 may be
modified to reduce the number of multiplication operations needed to compute the B-basis
polynomials by about half, at the cost of some additional bookkeeping to keep track of zero
product terms. (See Remark 3.) This reduces the number of required field multiplications
to 2 · 2k +O(k).

As an additional observation, notice that the approaches of Algorithms 2 and 3 may be
combined to produce an algorithm with characteristics somewhere between the two. Specif-
ically, a new algorithm Evalj may execute the precomputation loop of Algorithm 3 only up
to iteration j < k, and then compute the remaining product terms of the B-basis polyno-
mials for indices j + 1, . . . , k on the fly during the main evaluation loop. This results in a
space requirement of 2j +O(k) and a time requirement of (k − j)2k +O(2j).

Setting j dynamically based on the value of k can in fact produce algorithm variants with
distinct asymptotic performance. For instance, letting j = k/2 makes use of O(

√
n) space

to gain a speed-up of a factor of around 2 compared to Algorithm 2. Letting j = k − log k
results in asymptotic runtime of O(n log log n) and asymptotic space usage of O(n/ log n).

2.1 Non-streaming Evaluation

In the following we introduce an algorithm which evaluates a multilinear polynomial with
better performance than achieved by any of the previous approaches. This is accomplished by
abandoning the requirement that the coefficients of the polynomial are streamable, requiring

6



instead that they are accessible in a prescribed traversal order. Note that random access to
the polynomial coefficients is sufficient for this purpose.

Algorithm 4 traverses the indices α ∈ {0, 1}k in lexicographic order using a recursive
construction, building up the corresponding B-basis polynomial evaluations term by term
throughout the traversal, and storing in memory only the currently required sequence of pre-
fix product terms. This has the effect of both minimizing the number of field multiplications
needed for evaluation, and using only logarithmic stack space for the recursive calls.

Algorithm 4 Evaluating a multilinear polynomial p over multiaffine basis polynomials B
using recursive traversal of the index space

Precondition: Coefficients cα allow sequential access in lexicographic order by index

1 function Eval(c← Repr(p,B), r : Fk) → F
2 s : Fk ← (ai + biri for i ∈ [1 .. k]) ▷ Evaluate B-basis product terms
3 t : Fk ← (ci + diri for i ∈ [1 .. k])

4 function PrefixEval(α : {0, 1}∗) → F ▷ Find sum of partial terms for prefix α
5 i ← Len(α)
6 if i = k then
7 return cα
8 else
9 return si+1 ·PrefixEval(α0) + ti+1 ·PrefixEval(α1)

10 α : {0, 1}∗ ← ε ▷ Main recursive call
11 return PrefixEval(α)

Theorem 6. Algorithm 4 computes the evaluation of a k-variate multilinear polynomial,
represented as n = 2k coefficients over a multiaffine basis B. The algorithm uses O(n) time
and O(log n) space, and in particular requires 2 ·2k+O(k) field multiplications and 2k+O(k)
field additions.

Proof. For α ∈ {0, 1}∗ of length i ≤ k, we argue by induction on i that PrefixEval(α)
computes the sum ∑

α′=αβ∈{0,1}k
cα′

k∏
j=i+1

(
(1− α′

j)sj + α′
jtj

)
. (2)

For i = k, this is clear because PrefixEval returns cα, which is equal to the desired sum.
If i < k and the expression is assumed valid for prefixes of length i + 1, then we see that
PrefixEval(α) is given by

si+1

∑
α′=α0β

cα′

k∏
j=i+2

(
(1− α′

j)sj + α′
jtj

)
+ ti+1

∑
α′=α1β

cα′

k∏
j=i+2

(
(1− α′

j)sj + α′
jtj

)
,

which can be simplified to Equation 2. When α is the empty sequence, this expression is
equal to p(r) evaluated in terms of the B-basis polynomials, so Lines 10 and 11 produce the
desired result.

7



Each recursive call to PrefixEval increases the length of the prefix α by 1, so since the
function makes two recursive calls and terminates at length k, the outer call toPrefixEval(ε)
results in 2k+1 − 1 calls in total, of which 2k satisfy Len(α) = k and execute the base case,
and 2k − 1 execute the recursive case. Each recursive case requires two field multiplications
and one field addition, so the total needed for the call to PrefixEval is 2 · 2k − 2 multipli-
cations and 2k − 1 additions. The preprocessing of the product terms s and t additionally
requires 2k multiplications and additions, yielding a final count of 2·2k+2k−2 = 2·2k+O(k)
multiplications and 2k + 2k − 1 = 2k +O(k) additions.

The desired O(n) time bound follows from the counts of arithmetic operations. For space
usage, note that the recursive calls to PrefixEval go to depth at most k + 1, so the space
usage (e.g. on the stack) of these recursive calls is a constant times the maximum depth.
Together with the 2k field elements of space used to store s and t, this yields the desired
space bound of O(k) = O(log n).

To see that the algorithm uses the polynomial coefficients sequentially in lexicographic
order by index, note that the recursive calls to PrefixEval append 0 to the prefix before
appending 1. This means that if two indices α and α′ differ first at index j, with αj = 0
and α′

j = 1, then cα is visited in the recursive call to PrefixEval(α1 · · ·αj−10), while cα′ is
visited after this in the recursive call PrefixEval(α1 · · ·αj−11).

Remark 7. Similarly to previous algorithms in this note, an approach like that outlined in
Remark 3 allows Algorithm 4 to be modified to use only one multiplication operation per
recursive call to PrefixEval. This reduces the number of field multiplications to 2k+O(k).

Additionally, the traversal order used by Algorithm 4 to produce the basis polynomial
evaluations is not a hard requirement. An alternate approach would be to traverse the indices
in the order of a Gray Code, which enumerates the length k binary strings in such a way
that each is obtained from the last by inverting a single bit. This approach thus has the
potential advantage of only writing to a constant number of variables during the main loop,
but also adds some additional complexity to the implementation.

8


	Multilinear Polynomials
	Streaming Evaluation
	Non-streaming Evaluation


