Worksheet 18, Math H53 Integration in Alternate Coordinate Systems

Thursday, April 4, 2013

- 1. Use polar coordinates to evaluate the integral $\iint_R \sin(x^2 + y^2) dA$, where R is the region in the first quadrant between the circles with center the origin and radii 1 and 3.
- 2. Use polar coordinates to find the volume of the solid enclosed by the hyperboloid $-x^2 y^2 + z^2 = 1$ and the plane z = 2.
- 3. Evaluate the iterated integral $\int_0^1 \int_y^{\sqrt{2-y^2}} (x+y) \, dx \, dy$ by converting to polar coordinates.
- 4. A swimming pool is circular with a 40-ft diameter. The depth is constant along east-west lines and increases linearly from 2 ft at the south end to 7 ft at the north end. Find the volume of water in the pool.
- 5. Change from rectangular to cylindrical coordinates:
 - (a) (-1, 1, 1)(b) $(-2, 2\sqrt{3}, 3)$
 - (b) $(2, 2\sqrt{3}, 3)$
 - (c) $(2\sqrt{3}, 2, -1)$
 - (d) (4, -3, 2)
- 6. Sketch the solid described by the inequalities:
 - (a) $0 \le r \le 2, -\pi/2 \le \theta \le \pi/2, 0 \le z \le 1.$
 - (b) $0 \le \theta \le \pi/2, r \le z \le 2.$
- 7. Use cylindrical coordinates to evaluate $\iiint_E (x+y+z) dV$, where E is the solid in the first octant that lies under the paraboloid $z = 4 x^2 y^2$.
- 8. Use cylindrical coordinates to find the volume of the solid that is enclosed by the cone $z = \sqrt{x^2 + y^2}$ and the sphere $x^2 + y^2 + z^2 = 2$.
- 9. Change from rectangular to spherical coordinates:
 - (a) (0, -2, 0)(b) $(-1, 1, -\sqrt{2})$ (c) $(1, 0, \sqrt{3})$
 - (d) $(\sqrt{3}, -1, 2\sqrt{3})$
- 10. Sketch the solid described by the inequalities:
 - (a) $2 \le \rho \le 4, \ 0 \le \phi \le \pi/3, \ 0 \le \theta \le \pi.$
 - (b) $\rho \leq 2, \, \rho \leq \csc \phi.$
- 11. Use spherical coordinates to evaluate $\iiint_E (x^2 + y^2) dV$, where E lies between the spheres $x^2 + y^2 + z^2 = 4$ and $x^2 + y^2 + z^2 = 9$.
- 12. Use spherical coordinates to evaluate $\iiint_E xyz \, dV$, where E lies between the spheres $\rho = 2$ and $\rho = 4$ and above the cone $\phi = \pi/3$.
- 13. Evaluate the integral

$$\int_{-2}^{2} \int_{-\sqrt{4-x^2}}^{\sqrt{4-x^2}} \int_{2-\sqrt{4-x^2-y^2}}^{2+\sqrt{4-x^2-y^2}} (x^2+y^2+z^2)^{3/2} \, dz \, dy \, dx$$

by changing to spherical coordinates.