Worksheet 16, Math H53 Midterm II Review

Thursday, March 21, 2013

- 1. Find a vector function that represents the curve of intersection of the hyperboloid $z = x^2 y^2$ and the cylinder $x^2 + y^2 = 1$.
- 2. Find parametric equations for the tangent line to the curve $x = e^{-t} \cos t$, $y = e^{-t} \sin t$, $z = e^{-t}$ at the point (1, 0, 1).
- 3. Find the length of the curve $\langle \sqrt{2}t, e^t, e^{-t} \rangle$, where t varies between 0 and 1.
- 4. Find the limit if it exists, or show that it does not exist:

$$\lim_{(x,y,z)\to(0,0,0)}\frac{yz}{x^2+4y^2+9z^2}$$

- 5. Show that the function f given by $f(\mathbf{x}) = |\mathbf{x}|$ is continuous on \mathbb{R}^n .
- 6. Verify that the conclusion of Clairaut's Theorem holds (that is, $u_{xy} = u_{yx}$) for $u = \ln(x + 2y)$.
- 7. Use show that the function f(x, y) = x/(x+y) is differentiable at the point (2, 1), and find a linearization of f at this point. Use this linearization to approximate f(2.01, 1.1).
- 8. Let $z = \sin^{-1}(x y)$, and let $x = s^2 + t^2$, y = 1 2st. Find $\partial z/\partial s$ and $\partial z/\partial t$.
- 9. Find the directional derivative of $f(x, y, z) = xe^y + ye^z + ze^x$ at the point (0, 0, 0) in the direction of the vector $\mathbf{v} = \langle 5, 1, -2 \rangle$. What is a general equation for the directional derivative of f at the point (a, b, c) in the direction of a unit vector $\mathbf{u} = \langle \alpha, \beta, \gamma \rangle$?
- 10. Find the local maximum and minimum values and saddle point of the function $f(x, y) = x^3 12xy + 8y^3$.
- 11. Find the absolute maximum and minimum values of $f(x,y) = x^2 + y^2 + x^2y + 4$ on the square $S = \{(x,y) | |x| \le 1, |y| \le 1\}.$
- 12. Find the absolute maximum and minimum values of $f(x,y) = e^{-x^2-y^2}(x^2+2y^2)$ on the disk $D = \{(x,y)|x^2+y^2 \le 4\}$.
- 13. Among all the planes that are tangent to the surface $xy^2z^2 = 1$, find the ones that are farthest from the origin.