Worksheet 7, Math H53 Vector Functions

Tuesday, February 19, 2013

- 1. Sketch the curve of the vector function, and indicate with an arrow the direction in which t increases.
 - (a) $\mathbf{r}(t) = \langle \sin t, t \rangle$
 - (b) $\mathbf{r}(t) = \langle t, t \rangle$
 - (c) $\mathbf{r}(t) = \langle \cos t, \cos t \rangle$
 - (d) $\mathbf{r}(t) = \langle t^3, t^2 \rangle$
- 2. Find a vector function that represents the curve of intersection of the paraboloid $z = 4x^2 + y^2$ and the parabolic cyliner $y = x^2$.
- 3. Find the limit

$$\lim_{t \to 0} \left(\frac{t^2 - t}{t - 1} \mathbf{i} + \sqrt{t + 8} \mathbf{j} + \frac{\sin \pi t}{\ln t} \mathbf{k} \right).$$

- 4. Find the derivative of the vector function $\mathbf{r}(t) = \langle \tan t, \sec t, 1/t^2 \rangle$.
- 5. Find the unit tangent vector $\mathbf{T}(t)$ of the curve $\mathbf{r}(t) = \langle t^3 + 3t, t^2 + 1, 3t + 4 \rangle$ for t = 1, and in general.
- 6. Sketch the plane curve with vector equation $\mathbf{r}(t) = \langle 1 \cos t, 2 + \sin t \rangle$, find $\mathbf{r}'(t)$ and $\mathbf{r}''(t)$, and sketch the tangent vector $\mathbf{r}'(\pi/6)$ and the vector $\mathbf{r}''(\pi/6)$ with tails starting at $\mathbf{r}(\pi/6)$. What physical interpretation do these vectors have?
- 7. Find the point on the curve $\mathbf{r}(t) = \langle 2\cos t, 2\sin t, e^t \rangle$, $0 \le t \le \pi$ where the tangent line is parallel to the plane $\sqrt{3}x + y = 1$.
- 8. Find parametric equations for the tangent line to the curve $x = e^t$, $y = te^t$, $z = te^{t^2}$ at the point (1, 0, 0).
- 9. If **r** is a vector function, find a simple expression for $\frac{d}{dt}[\mathbf{r}(t) \times \mathbf{r}'(t)]$.
- 10. Find the length of the curve $\mathbf{r}(t) = \langle 1, t^2, t^3 \rangle, 0 \le t \le 1$.
- 11. Reparametrize the curve $\mathbf{r}(t) = \langle e^{2t} \cos 2t, 2, e^{2t} \sin 2t \rangle$ with respect to arc length measured from the point where t = 0 in the direction of increasing t.