Worksheet 5, Math 54 Orthogonality and Least Squares

Tuesday, April 1, 2014

- 1. True or false? Justify your answers.
 - (a) If **z** is orthogonal to \mathbf{u}_1 and to \mathbf{u}_2 and if $W = \text{Span}\{\mathbf{u}_1, \mathbf{u}_2\}$, then **z** must be in W^{\perp} .
 - (b) For each \mathbf{y} and each subspace W, the vector $\mathbf{y} \operatorname{proj}_W \mathbf{y}$ is orthogonal to W.
 - (c) The orthogonal projection $\hat{\mathbf{y}}$ of \mathbf{y} onto a subspace W can sometimes depend on the orthogonal basis for W used to compute $\hat{\mathbf{y}}$.
 - (d) If \mathbf{y} is in a subspace W, then the orthogonal projection of \mathbf{y} onto W is \mathbf{y} itself.
 - (e) If the columns of an $n \times p$ matrix U are orthonormal, then $UU^T \mathbf{y}$ is the orthogonal projection of \mathbf{y} onto the column space of U.
 - (f) If **b** is in the column space of A, then every solution of $A\mathbf{x} = \mathbf{b}$ is a least-squares solution.
 - (g) The least-squares solution of $A\mathbf{x} = \mathbf{b}$ is the point in the column space of A closest to \mathbf{b} .
 - (h) A least-squares solution of $A\mathbf{x} = \mathbf{b}$ is a list of weights that, when applied to the columns of A, produces the orthogonal projection of \mathbf{b} onto Col A.
 - (i) The normal equations always provide a reliable method for computing least-squares solutions.
 - (j) If $\hat{\mathbf{x}}$ is a least-squares solution of $A\mathbf{x} = \mathbf{b}$, then $\hat{\mathbf{x}} = (A^T A)^{-1} A^T \mathbf{b}$.
- 2. Find the best approximation to **z** by vectors of the form $c_1\mathbf{v_1} + c_2\mathbf{v_2}$:

$$\mathbf{z} = \begin{bmatrix} 3\\-7\\2\\3 \end{bmatrix}, \quad \mathbf{v}_1 = \begin{bmatrix} 2\\-1\\-3\\1 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} 1\\1\\0\\-1 \end{bmatrix}$$

- 3. Suppose A is $m \times n$ with linearly independent columns and **b** is in \mathbb{R}^m . Use the normal equations to produce a formula for $\hat{\mathbf{b}}$, the projection of **b** onto Col A.
- 4. Find a least-squares solution of

$$\begin{bmatrix} 2 & 1 \\ -2 & 0 \\ 2 & 3 \end{bmatrix} \mathbf{x} = \begin{bmatrix} -5 \\ 8 \\ 1 \end{bmatrix}$$

by constructing the normal equations for $\hat{\mathbf{x}}$ and solving for $\hat{\mathbf{x}}$.

5. Describe all least-squares solutions of the equation

$$\begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix} \mathbf{x} = \begin{bmatrix} 1 \\ 3 \\ 8 \\ 2 \end{bmatrix}$$

6. Find the orthogonal projection of **b** onto Col A and the least squares solution of $A\mathbf{x} = \mathbf{b}$ for

$$A = \begin{bmatrix} 4 & 0 & 1 \\ 1 & -5 & 1 \\ 6 & 1 & 0 \\ 1 & -1 & -5 \end{bmatrix}, \qquad \mathbf{b} = \begin{bmatrix} 9 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

7. Let A be an $m \times n$ matrix such that $A^T A$ is invertible. Show that the columns of A are linearly independent. (Note: We can't assume that A is invertible; it may not even be square.)