Worksheet 3, Math 54 Coordinates in Vector Spaces

Tuesday, March 4, 2014

- 1. True or false? Justify your answers.
 - (a) The number of pivot columns of a marix equals the dimension of its column space.
 - (b) A plane in \mathbb{R}^3 is a two-dimensional subspace of \mathbb{R}^3 .
 - (c) The dimension of the vector space \mathbb{P}_4 is 4.
 - (d) If $\dim V = n$ and S is a linearly independent set in V, then S is a basis for V.
 - (e) If a set $\{\mathbf{v}_1, \ldots, \mathbf{v}_p\}$ spans a finite-dimensional vector space V and if T is a set of more than p vectors in V, then T is linearly independent.
 - (f) The row space of an $m \times n$ matrix A is the same as the column space of A^T .
 - (g) If B is any echelon form of A, and if B has three nonzero rows, then the first three rows of A form a basis for the row space of A.
 - (h) The dimensions of the row space and the column space of A are the same, even if A is not a square matrix.
 - The sum of the dimensions of the row space and the null space of A equals the number of rows in A.
 - (j) On a computer, row operations can change the apparent rank of a matrix.
 - (k) If dim V = n and if S is a set of vectors spanning V, then S is a basis of V.
 - (1) The only 3-dimensional subspace of \mathbb{R}^3 is \mathbb{R}^3 itself.
 - (m) A vector space is infinite-dimensional if and only if it is spanned by an infinite set of vectors, and it is not spanned by any finite set of vectors.
- 2. Use coordinate vectors to test the linear independence of the sets of polynomials:
 - $1+2t^3, 2+t-3t^2, -t+2t^2-t^3$
 - $1 2t^2 t^3, t + 2t^3, 1 + t 2t^2$
- 3. Find a basis for the following subspace:

$$\left\{ \begin{bmatrix} p-2q\\2p+5r\\-2q+2r\\-3p+6r \end{bmatrix} : p,q,r \in \mathbb{R} \right\}$$

- 4. The first four "Hermite" polynomials are 1, 2t, $-2 + 4t^2$, and $-12t + 8t^3$. These polynomials arise naturally in the study of certain important differential equations in mathematical physics. Show that the first four Hermite polynomials form a basis of \mathbb{P}_3 .
- 5. Find the coordinates of the polynomial $p(t) = -1 + 8t^2 + 8t^3$ with respect to the basis of Hermite polynomials described in the previous question.
- 6. Let H be an n-dimensional subspace of an n-dimensional vector space V. Show that H = V.
- 7. How can the complex numbers \mathbb{C} be considered as a real vector space? What is the dimension of \mathbb{C} , interpreted as such?

- 8. Let X be the set of infinite sequences of real numbers $a = (a_1, a_2, a_3, ...)$. How can you make sense of X as a real vector space? What is its dimension?
- 9. If A is a 5×4 matrix, what is the largest possible dimension of the row space of A? If A is a 4×5 matrix, what is the largest possible dimension of the row space of A? Explain.
- 10. If the null space of an 8×7 matrix A is 5-dimensional, what is the dimension of the column space of A?
- 11. In statistics, a common requirement is that a matrix be of *full rank*, that is, the rank should be as large as possible. Explain why an $m \times n$ matrix with more rows than columns has full rank if and only if its columns are linearly independent.
- 12. Suppose A is an $m \times n$ matrix. Which of the subspaces Row A, Col A, Nul A, Row A^T , Col A^T , and Nul A^T are in \mathbb{R}^m and which are in \mathbb{R}^n ? How many distinct subspaces are on this list?
- 13. Let $U = {\mathbf{u}_1, \mathbf{u}_2}$ and $W = {\mathbf{w}_1, \mathbf{w}_2}$ be bases for a vector space V, and let P be a matrix whose columns are $[\mathbf{u}_1]_W$ and $[\mathbf{u}_2]_W$. Which of the following equations is satisfied by P for all $\mathbf{x} \in V$?
 - $[\mathbf{x}]_U = P[\mathbf{x}]_W$
 - $[\mathbf{x}]_W = P[\mathbf{x}]_U$