Worksheet 2, Math 54 Matrix Algebra

Tuesday, February 11, 2014

- 1. True or false? Justify your answers.
 - (a) For matrices A and B, each column of AB is a linear combination of the columns of B using weights from the corresponding column of A.
 - (b) For matrices A, B and C, AB + AC = A(B + C).
 - (c) For matrices A and B, $A^T + B^T = (A + B)^T$.
 - (d) If A is an $n \times n$ matrix, then $(A^2)^T = (A^T)^2$.
 - (e) For matrices A, B and C, $(ABC)^T = C^T A^T B^T$.
 - (f) If A and D are $n \times n$ matrices with $AD = I_n$, then $DA = I_n$.
 - (g) If the linear transformation $\mathbf{x} \mapsto A\mathbf{x}$ maps \mathbb{R}^n into \mathbb{R}^n , then the row reduced echelon form of A is I_n .
 - (h) If there is a **b** in \mathbb{R}^n such that the equation $A\mathbf{x} = \mathbf{b}$ is consistent, then the solution is unique.
 - (i) A subset H of \mathbb{R}^n is a subspace if the zero vector is in H.
 - (j) If B is an echelon form of a matrix A, then the pivot columns of B form a basis for Col A.
 - (k) Given vectors $\mathbf{v}_1, \ldots, \mathbf{v}_p$ in \mathbb{R}^n , the set of all linear combinations of these vectors is a subspace of \mathbb{R}^n .
 - (1) Let H be a subspace of \mathbb{R}^n . If $\mathbf{x} \in H$ and $\mathbf{y} \in \mathbb{R}^n$, then $\mathbf{x} + \mathbf{y} \in H$.
 - (m) The column space of a matrix A is the set of solutions of $A\mathbf{x} = \mathbf{b}$.
 - (n) Each line in \mathbb{R}^n is a one-dimensional subspace of \mathbb{R}^n .
 - (o) The dimension of $\operatorname{Col} A$ is the number of pivot columns in A.
 - (p) The dimensions of Col A and Nul A add up to the number of columns in A.
 - (q) If a set of p vectors spans a p-dimensional subspace H of \mathbb{R}^n , then these vectors form a basis for H.
 - (r) If \mathcal{B} is a basis for a subspace H, then each vector in H can be written in only one way as a linear combination of the vectors in \mathcal{B} .
 - (s) The dimension of Nul A is the number of variables in the equation $A\mathbf{x} = \mathbf{0}$.
 - (t) The dimension of the column space of A is rank A.
 - (u) If H is a p-dimensional subspace of \mathbb{R}^n , then a linearly independent set of p vectors in H is a basis for H.

- 2. Suppose the third column of B is the sum of the first two columns. What can be said about the third column of AB? Why?
- 3. Suppose $CA = I_n$ (the $n \times n$ identity matrix). Show that the equation $A\mathbf{x} = \mathbf{0}$ has only the trivial solution. Explain why A cannot have more columns than rows.
- 4. If **u** and **v** are in \mathbb{R}^n , how are $\mathbf{u}^T \mathbf{v}$ and $\mathbf{v}^T \mathbf{u}$ related? How are $\mathbf{u}\mathbf{v}^T$ and $\mathbf{v}\mathbf{u}^T$ related?
- 5. Suppose A, B, and C are invertible $n \times n$ matrices. Show that ABC is also invertible by producing a matrix D such that (ABC)D = I and D(ABC) = I.
- 6. Solve the equation AB = BC for A, assuming that A, B, and C are square and B is invertible.
- 7. Explain why the columns of an $n \times n$ matrix A are linearly independent when A is invertible.
- 8. Guess the inverse B of the matrix

$$A = \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 \\ 2 & 2 & 0 & & 0 \\ 3 & 3 & 3 & & 0 \\ \vdots & & \ddots & \vdots \\ n & n & n & \cdots & n \end{bmatrix}$$

Prove that your guess is correct by computing AB and BA.

9. Let

$$A = \begin{bmatrix} -1 & -7 & -3\\ 2 & 15 & 6\\ 1 & 3 & 2 \end{bmatrix}.$$

Find the third column of A^{-1} without computing the other columns.

- 10. An $m \times n$ upper triangular matrix is one whose entries below the main diagonal are 0's. When is a square upper triangular matrix invertible? Justify your answer.
- 11. Explain why the columns of A^2 span \mathbb{R}^n whenever the columns of an $n \times n$ matrix A are linearly independent.
- 12. Let A and B be $n \times n$ matrices. Show that if AB is invertible, so is B. Use this fact to show that A must also be invertible.
- 13. If A is an $n \times n$ matrix and the transformation $\mathbf{x} \mapsto A\mathbf{x}$ is one-to-one, what else can you say about this transformation? Justify your answer.
- 14. Suppose a linear transformation $T : \mathbb{R}^n \to \mathbb{R}^n$ has the property that $T(\mathbf{u}) = T(\mathbf{v})$ for some pair of distinct vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^n . Can T map \mathbb{R}^n onto \mathbb{R}^n ? Why or why not?
- 15. Construct a 3×3 matrix A and a vector **b** such that **b** is *not* in Col A.
- 16. Suppose the columns of a matrix $A = [\mathbf{a}_1 \cdots \mathbf{a}_p]$ are linearly independent. Explain why $\{\mathbf{a}_1, \ldots, \mathbf{a}_p\}$ is a basis for Col A.
- 17. If possible, construct a 3×5 matrix A such that dim Nul A = 3 and dim Col A = 2.
- 18. Let A be a 6×4 matrix and B a 4×6 matrix. Show that the 6×6 matrix AB cannot be invertible.