Worksheet 1, Math 54 Vector and Matrix Equations

Tuesday, January 28, 2014

- 1. True or false? Justify your answers.
 - (a) In some cases, a matrix may be row reduced to more than one matrix in reduced echelon form, using different sequences of row operations.
 - (b) The row reduction algorithm applies only to augmented matrices for a linear system.
 - (c) A basic variable in a linear system is a variable that corresponds to a pivot column in the coefficient matrix.
 - (d) Finding a parametric description of the solution set of a linear system is the same as *solving* the system.
 - (e) If one row in an echelon form of an augmented matrix is $\begin{bmatrix} 0 & 0 & 5 & 0 \end{bmatrix}$, then the associated linear system is inconsistent.
 - (f) The reduced echelon form of a matrix is unique.
 - (g) If every column of an augmented matrix contains a pivot, then the corresponding system is consistent.
 - (h) The pivot positions in a matrix depend on whether row interchanges are used in the row reduction process.
 - (i) A general solution of a system is an explicit description of all solutions of the system.
 - (j) Whenever a system has free variables, the solution set contains many solutions.
 - (k) Another notation for the vector $\begin{bmatrix} -4\\ 3 \end{bmatrix}$ is $\begin{bmatrix} -4 & 3 \end{bmatrix}$.
 - (l) The points in the plane corresponding to $\begin{bmatrix} -2\\5 \end{bmatrix}$ and $\begin{bmatrix} -5\\2 \end{bmatrix}$ lie on a line through the origin.
 - (m) An example of a linear combination of vectors \mathbf{v}_1 and \mathbf{v}_2 is the vector $\frac{1}{2}\mathbf{v}_1$.
 - (n) The solution set of the linear system whose augmented matrix is $\begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_3 & \mathbf{b} \end{bmatrix}$ is the same as the solution set of the equation $x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + x_3\mathbf{a}_3 = \mathbf{b}$.
 - (o) The set $\text{Span}\{\mathbf{u}, \mathbf{v}\}$ is always visualized as a plane through the origin.
 - (p) A vector **b** is a linear combination of the columns of a matrix A if and only if the equation $A\mathbf{x} = \mathbf{b}$ has at least one solution.
 - (q) The equation $A\mathbf{x} = \mathbf{b}$ is consistent if the augmented matrix $\begin{bmatrix} A & \mathbf{b} \end{bmatrix}$ has a pivot position in every row.
 - (r) The first entry in the product $A\mathbf{x}$ is a sum of products.
 - (s) If the columns of an $m \times n$ matrix A span \mathbb{R}^m , then the equation $A\mathbf{x} = \mathbf{b}$ is consistent for each \mathbf{b} in \mathbb{R}^m .
 - (t) If A is an $m \times n$ matrix and if the equation $A\mathbf{x} = \mathbf{b}$ is inconsistent for some **b** in \mathbb{R}^m , then A cannot have a pivot position in every row.

2. Find the general solution of the system of equations whose augmented matrix is given by

$$\begin{bmatrix} 0 & 1 & -2 & 3 \\ 1 & -3 & 4 & -6 \end{bmatrix}$$

- 3. Suppose a 3×5 coefficient matrix for a system has three pivot columns. Is the system consistent? Why or why not?
- 4. What would you have to know about the pivot columns in an augmented matrix in order to know that the linear system is consistent and has a unique solution?
- 5. Determine whether $\mathbf{b} = \begin{bmatrix} 2\\ -1\\ 6 \end{bmatrix}$ is a linear combination of the vectors formed from the columns of the matrix $A = \begin{bmatrix} 1 & 0 & 5\\ -2 & 1 & -6\\ 0 & 2 & 8 \end{bmatrix}$. 6. Let $\mathbf{a}_{1} = \begin{bmatrix} 1\\ 3\\ -8 \end{bmatrix}$ and $\mathbf{b}_{2} = \begin{bmatrix} 3\\ -5\\ -8 \end{bmatrix}$. For what value(s) of h is \mathbf{b} in the plane spanned by \mathbf{a}_{2} .
- 6. Let $\mathbf{a}_1 = \begin{bmatrix} 1\\ 3\\ -1 \end{bmatrix}$, $\mathbf{a}_2 = \begin{bmatrix} -5\\ -8\\ 2 \end{bmatrix}$, and $\mathbf{b} = \begin{bmatrix} 3\\ -5\\ h \end{bmatrix}$. For what value(s) of h is \mathbf{b} in the plane spanned by \mathbf{a}_1 and \mathbf{a}_2 ?
- 7. Let $A = \begin{bmatrix} 2 & 0 & 6 \\ -1 & 8 & 5 \\ 1 & -2 & 1 \end{bmatrix}$, let $\mathbf{b} = \begin{bmatrix} 10 \\ 3 \\ 7 \end{bmatrix}$, and let W be the set of all linear combinations of the columns of A.
 - (a) Is \mathbf{b} in W?
 - (b) Show that the second column of A is in W.
- 8. Write the following vector equation as a matrix equation:

$$x_{1} \begin{bmatrix} 4\\-1\\7\\-4 \end{bmatrix} + x_{2} \begin{bmatrix} -5\\3\\-5\\1 \end{bmatrix} + x_{3} \begin{bmatrix} 7\\-8\\0\\2 \end{bmatrix} = \begin{bmatrix} 6\\-8\\0\\-7 \end{bmatrix}$$

- 9. Construct a 3×3 matrix, not in echelon form, whose columns do *not* span \mathbb{R}^3 . Show that the matrix you construct has the desired property.
- 10. Let A be a 3×2 matrix. Explain why the equation $A\mathbf{x} = \mathbf{b}$ cannot be consistent for all \mathbf{b} in \mathbb{R}^3 . Generalize your argument to the case of an arbitrary A with more rows than columns.
- 11. Could a set of three vectors in \mathbb{R}^4 span all of \mathbb{R}^4 ? Explain. What about n vectors in \mathbb{R}^m when n is less than m?