Quiz 5 Solution Math 54 Linear Algebra and DE with Professor Voiculescu Tuesday, 6 March 2014

Problem 1. (10 points) Let
$$A = \begin{bmatrix} 1 & -4 & 9 & -7 \\ -1 & 2 & -4 & 1 \\ 5 & -6 & 10 & 7 \end{bmatrix}$$
.

(a) (2 points) Determine the rank A and the dim Row A.

Solution: The echelon form of A is $\begin{bmatrix} 1 & -4 & 9 & -7 \\ 0 & -2 & 5 & -6 \\ 0 & 0 & 0 & 0 \end{bmatrix}$. With two pivot columns and rows, Rank A=2 and dim Row A=2.

(b) (8 points) Find the bases for Col A and Row A.

Solution: Basis for Col
$$A = \left\{ \begin{bmatrix} 1\\-1\\5 \end{bmatrix}, \begin{bmatrix} -4\\2\\-6 \end{bmatrix} \right\}$$
 and Basis for Row $A = \left\{ \begin{bmatrix} 1\\-4\\9\\-7 \end{bmatrix}, \begin{bmatrix} -1\\2\\-4\\1 \end{bmatrix} \right\}$

Problem 2. (4 points) The set $\mathcal{B} = \{1 - t^2, t - t^2, 2 - t + t^2\}$ is a basis for \mathbb{P}_2 . Find the coordinate vector of $\mathbf{p}(t) = 1 + 3t - 6t^2$ relative to \mathcal{B} .

Solution: Using the standard basis $\{1, t, t^2\}$ for \mathbb{P}_2 , we have the linear system whose augmented matrix is:

$$\begin{bmatrix} 1 & 0 & 2 & 1 \\ 0 & 1 & -1 & 3 \\ -1 & -1 & 1 & -6 \end{bmatrix}$$

Solve this linear system and we get:

$$[1+3t-6t^2]_{\mathcal{B}} = \begin{bmatrix} 3\\2\\-1 \end{bmatrix}$$

Problem 3. (6 points) True or False. Provide a justification or a counter-example.

(a) \mathbb{P}_2 and \mathbb{R}_3 are isomorphic, i.e. there exists an isomorphism between the two spaces.

Solution: True, the change of coordinate basis matrix would be an isomorphism between the two spaces.

(b) Let W be a vector space spanned by the set $\mathcal{B} = {\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3}$. Then for all $\mathbf{x} \in W$, there exists a unique set of scalars c_1, c_2, c_3 such that $\mathbf{x} = c_1\mathbf{b}_1 + c_2\mathbf{b}_2 + c_3\mathbf{b}_3$.

Solution: False, any \mathcal{B} that is a linearly dependent set, then the constants wouldn't be unique.

(c) Let A be an $m \times n$ matrix. Rank A^T +Nullity A=n

Solution: True, Rank $A^T \equiv \dim \text{Row } A = \text{Rank } A$ (number of pivots). And so by Rank Theorem the statement is true.