
Lecture Notes, Week 8
Math 480A2: Mathematics of Blockchain Protocols, Fall 2022

Lecturer: Bryan Gillespie

Interactive Proof Protocols

Definition 1. An algorithm A is a computer program which operates on an input in a set
X, and produces an output in a set Y . Execution of an algorithm uses time and space, with
usage measured in units dependent on the application and computational model.

An algorithm is often modeled by the theoretical construction of a Turing machine, but in
practice a pseudo-code computer program with features similar to the C family of program-
ming languages is a good way to express algorithms with the same theoretical capabilities.

Algorithm 1 Example algorithm finding the maximum in a list of rational numbers

1 function Max(l: Q[]) → Q ∪ {−∞}
2 largest ← −∞
3 for val ∈ l do
4 if val > largest then
5 largest ← val
6 return largest

Algorithm 1 uses two rational numbers worth of space in its execution (the variables
largest and val), which can be written as O(1), and its execution uses a constant amount
of time for each iteration of the for loop, to compare val with largest and to possibly save
val as the new largest value. Thus if the input size is given by n, the length of the input list
l, then the algorithm runs in time O(n). Note that since comparison of rational numbers
and assignment of a variable don’t depend on the length of the input list, we can reasonably
assume that these computational costs don’t grow with the length of the input list.

However, notice an interesting quandary: the computational cost of comparing two ra-
tional numbers could concretely depend on the representation of the numbers, and how large
their numerators and denominators are, so this analysis does not capture some subtleties
of the algorithm’s performance which are hidden behind the assumption that “comparison
of two rational numbers takes a constant amount of time”. It is important in applications
to make assumptions which properly capture the most significant factors influencing per-
formance. This is also a good example of why finite fields are often used in cryptographic
settings: common operations have well-controlled computational costs.

An algorithm may make use of randomness in its computation, in which case it is called
a probabilistic algorithm. Such an algorithm can be thought of as having access to a
sequence of independent random bits (think of these as random coin flips), from which it
can take values for use in its computations.

1

Definition 2. A probabilistic algorithm is a family of deterministic algorithms Ar, where
the subscript r = (ri)

∞
i=1 is a sequence of bits, ri ∈ {0, 1}. A probabilistic algorithm on a

fixed input can be interpreted as a random variable on the space of random values of r:

A(x) : R1 ×R2 × · · · → Y

where A(x) : r 7→ Ar(x).

A probabilistic algorithm is said to satisfy a given bound on time or space usage (e.g.
polynomial time or O(n log n)) if the maximum time or space usage over all possible random
sequences satisfies the bound.

In the following, let f : X → Y be a function, where X and Y are finite sets. We want
to formulate a method of “interactive proof protocols” between a prover and a verifier for
statements of the form “I claim that f(x) is equal to y”. In such a proof protocol, we want
two assurances:

• If f(x) = y, then the prover is able to convince the verifier of this fact with high
probability

• If f(x) ̸= y, then no matter how the prover proceeds, the verifier is able to correctly
reject the claim with high probability

An interactive proof protocol is defined using two algorithms, a deterministic prover
algorithm P , and a probabilistic polynomial time verifier algorithm V . (Here “polynomial
time” must be with respect to some parameter for a space of functions for which the prover
and verifier algorithms apply. Usually if f has domain X and codomain Y , then the “input
size” of the claim f(x) = y is log |X| + log |Y |.) The prover and verifier algorithms start
by each receiving as inputs the two values x and y constituting the claim “f(x) is equal to
y”, and exchange a sequence of messages m1,m2, . . . ,mk in the following way. The protocol
designates either the prover or the verifier to send the first message, and then prover and
verifier take turns sending messages to each other, with the last message sent by the prover.
At the end, after the last message has been sent by the prover, the verifier algorithm V
chooses to either Accept or Reject the claim.

As algorithms, this can be thought of as “next-message-computing algorithms”, so that
if P starts, then m1 is computed by P(x, y), m2 is computed by V(x, y,m1), m3 is computed
by P(x, y,m1,m2), and so on. Finally, V(x, y,m1, . . . ,mk) computes as output one of either
Accept or Reject to represent its conclusion from the protocol. Each time that P and V
take turns sending messages is called a round of the protocol, so the number of rounds for
a protocol with k messages is ⌈k/2⌉.

The entire sequence of messages τ = (m1, . . . ,mk) is called a transcript of the interactive
protocol. We will write transcriptr(P ,V , x, y) for the transcript of the interactive protocol
with specified prover and verifier algorithms, inputs x and y, and verifier randomness r.
We will similarly write outr(P ,V , x, y) for the output of the protocol in this setting, either
Accept or Reject. These are deterministic functions of the inputs, but if r is omitted
from the subscripts, then we interpret them as random variables over the space of possible
sequences r.

2

With all of the above in mind, the following definition gives the two assurances required
for an interactive proof system to be effective at allowing a prover to convince a verifier of
the validity of a statement, the so-called completeness and soundness properties.

Definition 3. Let P , V be the prover and verifier algorithms for an interactive proof system
as discussed above. Then (P ,V) is said to have completeness error δC and soundness
error δS for f if the following two properties hold.

• (Completeness) For every x ∈ X,

Pr[out(P ,V , x, f(x)) = Accept] ≥ 1− δC

• (Soundness) If P ′ is any deterministic prover algorithm, then for every input x ∈ X
and every output y ∈ Y different than f(x),

Pr[out(P ′,V , x, y) = Reject] ≥ 1− δS

The interactive proof system is called valid for f if it has completeness and soundness error
at most 1/3.

A number of performance measures are significant for ineractive protocols:

• The prover algorithm’s time and space complexity

• The verifier algorithm’s time and space complexity

• The round complexity of the protocol, given by the maximum value of ⌈k/2⌉ where
k is the number of messages exchanged

• The total number of bits communicated, i.e.
∑
ℓ(mi) where ℓ denotes the length of

the message, in bits

The latter two parameters may vary depending on the choice of input x and output y,
and on the choice of the randomness r used by the verifier. To quantify these values when
this happens, either a maximum or an average of the numbers of rounds may be used.

Remark 4. One might ask the (justified) question of what is gained by introducing the
formalism of an interactive proof. The answer, roughly, is that interactive proof protocols
have the ability to provide a practical method of proof for statements which are more com-
putationally difficult than what is possible to prove without the added features of interaction
and randomness.

In the theory of computation, a language L is a subset of a space U of possible outcomes
— sometimes defined as U = {0, 1}n for some integer n, but more generally any finite or
countably infinite set is allowable. The language L describes the elements of U which are
the members of interest, and a computation solves the decision problem for a language
if, given an element x ∈ U , it can determine whether x is a member of L. An interactive
protocol is said to solve the decision problem for a language L with soundness error δC
and completeness error δS if for any x ∈ L, the probability that out(P ,V , x) = Accept is

3

bounded below by 1 − δC , and for any x /∈ L and any prover strategy P ′, the probability
that out(P ′,V , x) = Reject is bounded below by 1 − δS. The function definition of an
interactive proof protocol is thus the definition just given, for the language L = {(x, f(x)) :
x ∈ X} ⊆ X × Y = U .

The space of languages which are decidable by a deterministic polynomial time algorithm
with the help of a pre-computed proof (sometimes called a “witness” or “certificate”) is the
well-known class of NP problems. The languages decidable by an interactive proof protocol
in the above way can be shown to be exactly the class PSPACE of languages which are
decidable by a deterministic algorithm using at most polynomial space. This class includes
NP as a subset, but is believed (but not proven!) to be larger than NP.

A further theoretical gap is obtained from a further generalization of interactive proof
protocols, called interactive oracle proofs or IOPs. We will define these protocols later, but
it can be shown that IOPs can decide languages in the (probably) even larger class NEXP
of languages decideable by a “non-deterministic” algorithm in exponential time (here, 2
raised to some polynomial in the input size). These complexity classes satisfy an inclusion
hierarchy:

P ⊆ NP ⊆ PSPACE ⊆ EXP ⊆ NEXP

Unfortunately, there is no proof that any of these inclusions are strict inclusions — however,
it is expected that all of them are. One conclusion that can be drawn from known results
(specifically, the time hierarchy theorem) is that there is a strict inclusion in at least one of
the steps between P and EXP. Besides this, no further relations are known.

Sum-check Protocol

We have previously seen one interactive protocol, giving a proof system for the “graph
non-isomorphism” problem. We will return to this protocol again later when we discuss
zero-knowledge proofs. We now introduce a protocol that gets significant mileage either by
specializing it to solve useful problems, or as a sub-component of more complicated protocols:
the sum-check protocol.

Let f ∈ K[x1, . . . , xv] be an n-variate polynomial over a finite field K with degree at
most di in each variable xi, and let A be a small finite subset of K. Then the sum-check
protocol provides an interactive proof system for the function

S : f 7→
∑

x1,...,xn∈A

f(x1, . . . , xn)

We will focus on the case of A = {0, 1}, wherein the polynomial is summed over all bi-
nary inputs, but note that the algorithm generalizes to different sets A without significant
modification. In the binary case, we are trying to prove interactively that the summation∑

x1∈{0,1}

· · ·
∑

xn∈{0,1}

f(x1, . . . , xn)

has a particular value. The naive approach in which a verifier just checks the sum themselves
requires evaluating f at 2n separate inputs and computing the sum of all of these values. We

4

will see that the interactive protocol below will allow the verifier to confirm the value of this
sum with high probability in time O(v + τ), where τ is the time it takes to evaluate f at a
single input inKn. The prover will have a little more work to do than the original summation
in order to produce this proof, but the prover’s runtime is still O(2nτ) for polynomials of
uniformly bounded degree, which is only a (usually small) constant factor more than just
computing the sum without a proof. The protocol is given by the following.

• P and V are given access to the polynomial f and the claimed sum T as inputs to the
protocol

• For each round i = 1, . . . , n, a tuple of previous random challenges (r1, . . . , ri−1) has
been generated, and the following steps are executed:

– P sends the univariate polynomial gi(y) claimed to be equal to the polynomial

fi(y) =
∑

xi+1,...,xn∈{0,1}

f(r1, . . . , ri−1, y, xi+1, . . . , xn)

– V checks that gi has degree at most di, and that gi−1(ri−1) = gi(0) + gi(1), and
rejects if either of these conditions fails

– V chooses a random challenge ri ∈ K uniformly at random, and sends it to P

• V returns Accept if gn(rn) = f(r1, . . . , rn), and otherwise returns Reject.

In the above, for round 1, the tuple (r1, . . . , ri−1) is interpreted as an empty tuple, and the
polynomial gi−1(ri−1) is interpreted as the claimed sum T . For round n, it is not necessary
for V to send rn back to P , as the role of P in the protocol has concluded by this point.

Example 5. Let f(x1, x2, x3) = x21+x1x2x3+3x1x3+x
2
2. Then the sum of f over all binary

inputs is S(f) = 4+1+6+4 = 15. The sum-check protocol with inputs f and T = 15 then
proceeds as follows. In round 1, P computes the sum

g1(y) = f1(y) =
∑

x2,x3∈{0,1}

f(y, x2, x3)

= f(y, 0, 0) + f(y, 0, 1) + f(y, 1, 0) + f(y, 1, 1)

= (y2) + (y2 + 3y) + (y2 + 1) + (y2 + y + 3y + 1)

= 4y2 + 7y + 2

Then V checks that g1 has degree at most 2, and that

g1(0) + g1(1) = 2 + (4 + 7 + 2) = 15 = T

The verifier then chooses a random number, say r1 = 4, and sends it back to P . In round 2,
P computes the sum

g2(y) = f2(y) =
∑

x3∈{0,1}

f(r1, y, x3)

= f(4, y, 0) + f(4, y, 1)

= (16 + y2) + (16 + 4y + 12 + y2)

= 2y2 + 4y + 44

5

Then V checks that g2 has degree at most 2, and equality between

g2(0) + g2(1) = 44 + (2 + 4 + 44) = 94

and
g1(r1) = 4(4)2 + 7(4) + 2 = 64 + 28 + 2 = 94

The verifier chooses another random number, say r2 = −2, and sends it to P . Finally, in
round 3, P computes the sum

g3(y) = f3(y) = f(r1, r2, y)

= f(4,−2, y)
= 16− 8y + 12y + 4

= 4y + 20

Then V checks that g3 has degree at most 1, and equality between

g3(0) + g3(1) = 20 + (4 + 20) = 44

and
g2(r2) = 2(−2)2 + 4(−2) + 44 = 8− 8 + 44 = 44

Last, V picks a final random number, say r3 = 5, and checks equality between

g3(r3) = 4(5) + 20 = 40

and

f(r1, r2, r3) = f(4,−2, 5) = (4)2 + (4)(−2)(5) + 3(4)(5) + (−2)2 = 16− 40 + 60 + 4 = 40

The last check satisfied, the verifier now returns Accept.

In the following, let K be a finite field, let d = (d1, . . . , dn) be a vector of nonnegative
integers, and let Pd be the set of polynomials in K[x1, . . . , xn] having degree at most di in
each variable xi.

Proposition 6. Let S : Pd → K be the binary summation function, defined by

S : f 7→
∑

x1,...,xn∈{0,1}

f(x1, . . . , xn)

Then the sum-check protocol is an interactive proof system for S with completeness error
δC = 0, and soundness error δS = (d1 + . . .+ dn)/ |K|.

Proof. If the claimed sum T coincides with the actual sum S(f) and P is the prescribed
sum-check prover, then all of the checks made by V will succeed. This is because of the
degree restrictions on f , and the fact that

fi−1(ri−1) =
∑

xi,...,xn∈{0,1}

f(r1, . . . , ri−1, xi, xi+1, . . . , xn)

=
∑

y∈{0,1}

∑
xi+1,...,xn∈{0,1}

f(r1, . . . , ri−1, y, xi+1, . . . , xn) = fi(0) + fi(1)

6

In the end, fn(rn) is equal to f(r1, . . . , rn) by definition, so in this case, V returns Accept.
Now suppose that an adversarial prover algorithm P ′ attempts to produce a false proof

for a claimed sum T which is not equal to S(f). In order for V to accept the claim, it
will have to be the case that gn(rn) = fn(rn) = f(r1, . . . , rn), as this is the last check that
must be satisfied in order for V to return Accept. This outcome is a subset of the event
[gi(ri) = fi(ri) for some index i], so an upper bound on the probability of this event will
suffice to prove our soundness error bound. For the following, let Ai = [gi(ri) = fi(ri)].
Then we have the bound

Pr(An) ≤ Pr
(
∪ni=1 Ai

)
=

n∑
i=1

Pr(Ai ∩ (A1 ∪ · · · ∪ Ai−1)
c)

=
n∑

i=1

Pr(Ai | (A1 ∪ · · · ∪ Ai−1)
c) Pr((A1 ∪ · · · ∪ Ai−1)

c)

≤
n∑

i=1

Pr(Ai | (A1 ∪ · · · ∪ Ai−1)
c)

The first term in this sum is just Pr(A1). In the outcomes in this event, the prover strategy
P ′ produces a polynomial g1 which must satisfy g1(0) + g1(1) = T . Since f1 is a polynomial
satisfying f1(0) + f1(1) = S(f) ̸= T , it must be the case that g1 ̸= f1 as polynomials. Thus
the Schwartz-Zippel lemma implies that the probability that g1(r1) = f1(r1) for r1 chosen
uniformly from K and independently of g1 and f1 is bounded above by d1/ |K|.

For subsequent terms of the sum, we consider the conditional probability

Pr(Ai | (A1 ∪ · · · ∪ Ai−1)
c)

for i > 1. In the restricted probability space of outcomes satisfying gj(rj) ̸= fj(rj) for
j < i, P ′ produces a polynomial gi which must satisfy gi(0) + gi(1) = gi−1(ri−1). Since
fi(0) + fi(1) = fi−1(ri−1) ̸= gi−1(ri−1), it must be the case that gi ̸= fi as polynomials in
order for this check to pass. Therefore, we can again conclude by the Schwartz-Zippel lemma
that for ri chosen uniformly from K, the probability that gi(ri) = fi(ri) is bounded above
by di/ |K|.

Summing these bounds gives the desired estimate,

Pr[out(P ′,V , f, T) = Accept] ≤ Pr(An) ≤
n∑

i=1

di
|K|

=

∑n
i=1 di
|K|

The costs of the sum-check protocol can be assessed as follows. There are n rounds of
interaction, and the total amount of data communicated is di + 1 coefficients in K for the
polynomial gi(y), plus a single random field element in all but the final round, which totals
to

∑
i di + 2n+ 1 field elements in total.

The verifier checks that gi(0) + gi(1) = gi−1(ri−1) in each round, so by the end of the
protocol, each polynomial gi has been evaluated 3 times. Additionally, the verifier has to

7

evaluate f(r1, . . . , rn) at the end. Thus the verifier’s runtime is O(
∑

i di) + τ , where τ is the
time it takes to evaluate f at random field elements.

The prover’s runtime is a bit more subtle to analyze. One equivalent way to describe
the polynomial fi is to send its evaluations at di + 1 different points, say y ∈ {0, 1, . . . , di}.
Computing these values costs 2n−i(di + 1)τ , where τ again represents the time required to
evaluate f . Summing over the various rounds gives a runtime of

O(
n∑

i=1

2n−i(di + 1)τ)

If the degrees di are bounded by a constant, then this can be simplified to O(2nτ), since the
sum of a geometric sequence of terms 2n−i is bounded by 2n.

Application: IP for #SAT

In the following, we apply the sum-check protocol to give an interactive proof protocol solving
the “#SAT” problem.

Definition 7. A boolean formula ϕ over variables x1, . . . , xn is a binary tree where each
leaf is labeled by either a variable xi, or its negation x̄i, and each interior vertex is labeled
by either AND or OR. The size of ϕ is the number of leaf vertices. A boolean formula
can be thought of as a function ϕ : {0, 1}n → {0, 1} by interpreting the values 0 and 1
as False and True respectively, and mapping an input (x1, . . . , xn) to the value obtained
by evaluating each gate at the values of its children in the binary tree. An input vector
satisfying ϕ(x1, . . . , xn) = 1 is called a satisfying assignment of ϕ.

If ϕ is a boolean formula, then the #SAT problem is the problem of computing the
total number of satisfying assignments of ϕ. This number can be written as∑

x1,...,xn∈{0,1}

ϕ(x1, . . . , xn)

If ϕ were a low-degree polynomial over a finite field, then the sum-check protocol would
be an ideal approach to allow a prover to convince a verifier of this value. To accomplish
this, we transform ϕ into an equivalent arithmetic circuit.

Definition 8. An arithmetic circuit ψ over a fieldK with variables x1, . . . , xn is a directed,
acyclic graph with source vertices labeled by variables or constants in K, called the inputs
of the circuit, non-source vertices labeled by either +, −, or × with + and × vertices having
in-degree 2 and − vertices having in-degree 1, and exactly one sink vertex with out-degree
0.

Arithmetic circuits can be thought of as “polynomials with a specified ordering of arith-
metic operations”. To each arithmetic circuit ψ there is an associated polynomial which is
defined recursively by combining the polynomials associated with the inputs ψ1 and ψ2 of
the sink vertex of ψ using the operation labeling this vertex.

If ϕ is a boolean formula with size m, then an arithmetic circuit ψ can be constructed
which extends the boolean function of ϕ to the polynomial of ψ (that is, ψ agrees with ϕ on
all boolean inputs). This is accomplished as follows:

8

• Include one input for each variable xi of ϕ, and one input for the constant 1

• For each variable xi which appears negated in ϕ, add a − gate with input xi and a +
gate with inputs 1 and −xi to give the expression 1− xi.

• For each AND gate with previously constructed arithmetic inputs ψ1 and ψ2, add a ×
gate representing the expression ψ1 × ψ2.

• For each OR gate with previously constructed arithmetic inputs ψ1 and ψ2, add gates
representing the expression (ψ1 + ψ2)− (ψ1 × ψ2)

The result of this operation is a polynomial which coincides with ϕ on all boolean inputs,
along with an evaluation ordering which allows the evaluation of this polynomial at any
input vector using at most m multiplication operations, at most 4m addition operations,
and at most 2m negation operations. Then we can compute∑

x1,...,xn∈{0,1}

ψ(x1, . . . , xn)

to solve the #SAT problem. Note that this is a sum in K, so if K has characteristic p then
we know from this sum that the number of satisfying assignments is congruent to the sum
modulo p. However, as long as charK > 2n, this identifies the integer sum uniquely. For the
analysis of the sum-check protocol, we need an analysis of the variable-wise degrees of the
polynomial ψ.

Lemma 9. If ψ is the arithmetic circuit associated with a boolean formula of size m, then
as a polynomial,

∑
i degi(ψ) ≤ m.

Proof. This follows by the inductive construction of ψ. If ψ is a variable or its complement
then m = 1 and the total degree of ψ is 1. Otherwise, if the root gate of the associated
boolean formula ϕ is an AND or OR gate, then ψ combines the output of two sub-circuits ψ1

and ψ2 corresponding to the inputs of the root gate of ϕ, and whose sizes m1 and m2 sum to
m. This combination produces a polynomial which is either ψ1× ψ2 or ψ1 + ψ2− (ψ1× ψ2),
and in either case, the degree of this polynomial in a variable xi is at most the sum of
the degrees of ψ1 and ψ2 in xi. In particular, by inductive hypothesis,

∑
i degi(ψj) ≤ mj,

j = 1, 2, so
n∑

i=1

degi(ψ) ≤
∑
j∈1,2

n∑
i=1

degi(ψj) ≤ m1 +m2 = m

In particular, the sum-check protocol applied to the associated polynomial of ψ allows
a prover to convince a verifier of the number of satisfying assignments of ϕ while requiring
only O(n+

∑
i degi ψ)+O(m) = O(m) field operations. The soundness error of the protocol

is at most m/ |K|.

9

