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Probability and the Schwartz-Zippel Lemma

Definition 1. Let X be a finite or countably infinite set. Then a probability function on
X is a function p : X → [0, 1] satisfying∑

x∈X

p(x) = 1

The value p(x) for x ∈ X is referred to as the probability of outcome x, and the set X
along with a probability distribution function is called a discrete probability space. A
subset A ⊆ X is called an event in X, and in general we write p(A) for the total probability
of all outcomes in A,

p(A) :=
∑
x∈A

p(x)

Remark 2. If (X, p) is a discrete probability space, then sometimes the notation Pr will
be used to denote the probability function of X without referring to its name explicitly. In
this case, we may discuss a discrete probability space without giving an explicit name for a
probability function, understanding that any references to probabilities on this space will be
accomplished using this generic notation.

Proposition 3. Let X be a discrete probability space. Then

• (Monotonicity) If A,B ⊆ X with A ⊆ B, then Pr(A) ≤ Pr(B)

• (Disjoint additivity) If A1, A2, . . . ⊆ X are disjoint, then Pr(∪Ai) =
∑

Pr(Ai)

• (Subadditivity) If A1, A2, . . . ⊆ X, then Pr(∪iAi) ≤
∑

i Pr(Ai)

Proof. Monotonicity follows from the definition of Pr(A) for an event A ⊆ X: if A ⊆ B,
then

Pr(A) =
∑
x∈A

Pr(x) ≤
∑
x∈B

Pr(x) = Pr(B)

Disjoint additivity is a consequence of the fact that absolutely convergent series can be
re-ordered. If A1, A2, . . . ⊆ X are disjoint, then

Pr(∪Ai) =
∑

x∈∪Ai

Pr(x) =
∞∑
i=1

∑
x∈Ai

Pr(x) =
∞∑
i=1

Pr(Ai)
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Finally, subadditivity can be seen as a consequence of monotonicity and disjoint additivity.
Let B1 = A1, and for i > 1 let Bi = Ai \ ∪i−1

j=1Aj. Then the sets Bi are a disjoint collection
satisfying ∪iBi = ∪iAi and Bi ⊆ Ai for each i, from which we conclude

Pr(∪iAi) = Pr(∪iBi) =
∑
i

Pr(Bi) ≤
∑
i

Pr(Ai)

The subadditivity property is sometimes also referred to as the union bound, as it bounds
the probability of a union of events by the sum of the individual probabilities of the events.

Example 4. Let X be a finite set, and let Pr(x) = 1/ |X| for each x ∈ X. This is called
the uniform distribution on X.

Definition 5. Let X be a discrete probability space. The indicator function χA of an
event A ⊆ X is the function on X taking value 1 if x ∈ A and 0 if x /∈ A. Then in particular,
we can write

Pr(A) =
∑
x∈X

χA(x) Pr(x)

If A and B are events, then χA∩B = χAχB, and χX\A = 1− χA.

Definition 6. Let X be a discrete probability space, and let A,B be events with Pr(B) > 0.
Then the conditional probability of A given B, written Pr(A | B), is defined as

Pr(A | B) =
Pr(A ∩B)

Pr(B)

Conditional probability describes the likelihood that an outcome in A occurs when re-
stricting the outcomes to only those in B. Notice in particular that a conditional probability
is a probability, and takes values in [0, 1].

Definition 7. Let X be a discrete probability space. Then a random variable on X is a
function with domain X.

A random variable should be thought of as an outcome associated with value randomly
sampled from X with its underlying probability function.

Definition 8. Let X be a discrete probability space. If S is a statement depending on the
values of one or more random variables, then we write [S] to denote the set

[S] = {x ∈ X : S holds for x}

Sometimes, the notation Pr[S] will be used to denote the probability Pr([S]) of this set.

Example 9. Let X = {1, 2, 3, 4, 5, 6} be the set of possible rolls of a 6-sided die with
uniform probability distribution, and let P : X → {0, 1} be the parity function, mapping
even numbers in X to 0, and odd numbers in X to 1. Then the set of odd numbers can be
written as [P = 1], and their probability can be written as Pr[P = 1] = 1/2.
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Definition 10. Let X be a discrete probability space, and let R : X → R be a random
variable. Then the expected value of R is the sum

E(R) =
∑
x∈X

R(x) Pr(x)

Proposition 11 (Markov’s Inequality). Let X be a discrete probability space, and let R :
X → R+ be a nonnegative random variable on X. Then for any a ∈ R+,

Pr[R ≥ a] ≤ E(R)

a

Proof. Let A = [R ≥ a]. Then we have

E(R) =
∑
x∈X

R(x) Pr(x) ≥
∑
x∈X

χAR(x) Pr(x) ≥
∑
x∈X

χAaPr(x) = a
∑
x∈X

χA Pr(x) = aPr[R ≥ a]

Dividing through by a yields the desired inequality.

Definition 12. Let X be a discrete probability space, and let Fi : X → Ei be random
variables on X, i = 1, . . . , n. Then the Fi are said to be independent random variables if
for each set of outputs ei ∈ Ei, i = 1, . . . , n, we have

Pr[F1 = e1, F2 = e2, . . . , Fn = en] = Pr[F1 = e1] Pr[F2 = e2] · · ·Pr[Fn = en]

Proposition 13. Let X be a discrete probability space, let F : X → E be a random variable
on X, and let n ∈ N. Then it is possible to construct a discrete probability space Y and
independent random variables F1, . . . , Fn : Y → E on Y such that Pr[Fi = e] = Pr[F = e].

The following lemma will be a fundamental tool for results in verifiable computation.

Lemma 14 (Schwartz-Zippel lemma). Let K be a field, and let f ∈ K[x1, . . . , xn] be a
nonzero polynomial of total degree d ≥ 0 over K. Let S be a finite subset of K, and let
r1, . . . , rn be chosen uniformly and independently from S. Then

Pr[f(r1, . . . , rn) = 0] ≤ d

|S|

Proof. We prove this fact by induction on the number of variables n. For one variable, the
polynomial f has at most d roots in K, and so at most d elements out of the finite set S
satisfy the condition f(r1) = 0. Since the value of r1 was chosen uniformly from S, we have
that

Pr[f(r1) = 0] =
|{s ∈ S : f(s) = 0}|

|S|
=

d

|S|
Now suppose that n > 1, and the result holds for polynomials in fewer variables. Then we
can write f as

f(x1, . . . , xn) =
d∑

i=0

xi
nfi(x1, . . . , xn−1)
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Since f is a nonzero polynomial, there is at least one index i such that fi is a nonzero
polynomial. Let j be the largest such index, and define events A and B by

A = [f(r1, . . . , rn) = 0] B = [fj(r1, . . . , rn−1) = 0]

Since f has total degree n, the polynomial fj has total degree at most d − j. Since fj
doesn’t depend on xn, it is a polynomial in at most n− 1 variables, so we have by induction
hypothesis that

Pr(B) = Pr[fj(r1, . . . , rn−1) = 0] ≤ d− j

|S|
If we instead restrict our attention to the event Bc, the values r1, . . . , rn in Bc are determined
only by the first n−1 variables, since these are the only ones influencing when fj(r1, . . . , rn−1)
is nonzero. In particular, for any fixed choices of r1, . . . , rn−1 satisfying this condition, the
polynomial g(xn) = f(r1, . . . , rn−1, xn) has degree j, and thus has at most j roots in K. The
probability that a random value rn is one of these roots is therefore at most j/ |S|. This
allows us to give a bound for Pr(A ∩Bc) as follows.

Pr(A ∩Bc) =
∑

r1,...,rn

χA∩Bc Pr(r1, . . . , rn)

=
∑

r1,...,rn−1

χBc

∑
rn

χA
1

|S|n

≤
∑

r1,...,rn−1

χBc

j

|S|n

=
j

|S|
∑

r1,...,rn−1

χBc

1

|S|n−1

=
j

|S|
∑

r1,...,rn

χBc

1

|S|n

=
j

|S|
PrBc

Finally, we can apply our bounds for P (B) and P (A ∩Bc) to find:

Pr(A) = Pr(A ∩B) + Pr(A ∩Bc)

= Pr(B)
Pr(A ∩B)

Pr(B)
+ Pr(Bc)

Pr(A ∩Bc)

Pr(Bc)

≤ Pr(B) +
Pr(A ∩Bc)

Pr(Bc)

≤ d− j

|S|
+

j

|S|
=

d

|S|

This completes the induction.

The importance of this lemma for our purposes is in its use for a randomized algorithm for
testing whether two polynomials are equal everywhere. To do this deterministically requires
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checking that the polynomials have equal coefficients, which can be quite inefficient in various
settings. If we allow a randomized approach, then it is enough to pick random elements from
a fixed set of large enough size, and compare the evaluations of the polynomials at coordinates
given by the chosen random elements. If the evaluations at random coordinates are equal,
then with high probability the polynomials themselves are equal as polynomials.
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