
Lecture Notes, Week 6
Math 480A2: Mathematics of Blockchain Protocols, Fall 2022

Lecturer: Bryan Gillespie

Elliptic Curves Over Finite Fields

In the following, we will write Fq for the finite field of order q = pr. Elliptic curves taken
over finite fields are a bountiful source of finite abelian groups which are used in modern
cryptography.

A first obvious observation about elliptic curves taken over Fq is that their solution sets
consist of pairs of field elements, and thus are finite. A natural question then is: how many
elements can an elliptic curve group over Fq have. An answer to this is given by the famous
Hasse’s theorem.

Theorem 1 (Hasse’s Theorem). Let E be an elliptic curve over Fq, and let N(E) be the
number of elements in the elliptic curve group associated with E. Then

|N(E)− (q + 1)| ≤ 2
√
q

For a prime number p, the value of N(E) for an elliptic curve E over Fp can be any
number in the range given by Hasse’s theorem. For prime powers of higher degree, almost
every group size in the Hasse range can be achieved except for a small number of possibilities
which can be explicitly described.

When q is not a power of 2, we can give a nice heuristic reason for why Hasse’s theorem
holds. In this case, E can be expressed in a Weierstrass form that is given by y2 = f(x) for
some cubic polynomial f . If we didn’t know anything about the values of f(x) for different
values of x in Fq, we might guess that f(x) is a “random” element of Fq. If we make this
assumption, then we can identify three possible outcomes:

• If f(x) ̸= 0 is a square in Fq, then letting y be a square root of this value, we get two
points on E, (x, y) and (x,−y).

• If f(x) ̸= 0 is a non-square in Fq, then no value of y gives a solution of y2 = f(x), so
no point on E has x as its x-coordinate.

• If f(x) = 0, then (x, 0) is a single point on E.

For odd q, it can be shown that exactly half of the nonzero elements of Fq are squares. If
we assume that f(x) is “random” and distributed uniformly across Fq, then this means that
the expected number of points on E for each point x ∈ Fq is 1, giving on average q points of
E plus 1 for the point at infinity.

Stretching this heuristic further, the bound of 2
√
q in Hasse’s theorem can be interpreted

probabilistically as an instance of the well-known central limit theorem. In particular, the

1

scale of the normal distribution associated with the central limit theorem is
√
n where n

is the number of random variables in a sum. Thus
√
q is the “right size” to expect if the

sampling of squares and non-squares for f(x) was actually random and independent.
Once we have the size of a finite abelian group, another natural question to ask is: what

is its structure? This has a nice answer for elliptic curve groups over a finite field.

Proposition 2. Let E be an elliptic curve over Fq. Then E is either a cyclic group or a
sum of two cyclic groups. In the latter case, there are integers m,n with m | n such that
E ∼= (Z/mZ)⊕ (Z/nZ).

The divisibility part of the above result implies that the factorization of the order N(E)
of an elliptic curve group over a finite field is strongly related to its group structure. For
instance, if the group order has no repeated prime factors, then this implies that the group
itself is cyclic! In general, at most half of the copies of a prime number in the factorization
of the elliptic curve group order can be used as part of the size m of the smaller cyclic part
in the above representation.

A computational operation which is frequently useful when working with elliptic curve
groups is that of taking a repeated sum of a point with itself many times. This repeated
sum can be computed efficiently as follows.

Let K be a field and let E be an elliptic curve defined over K. For positive m ∈ N, write
m in its binary representation via

m =
d−1∑
i=0

ai2
i

where ai ∈ {0, 1} is the coefficient of 2i in this representation. We will assume thatm > 0 and
the largest coefficient ad−1 is 1. Then the repeated sum mP can be computed by repeated
doubling and addition d times, as follows.

Algorithm 1 Fast computation of mP in an elliptic curve group by a positive integer m

1 function Mult(m = 2d−1 + 2d−2ad−2 + · · ·+ 2a1 + a0 : N+, P : E(K)) → E(K)
2 Q : E(K) ← P
3 for i ∈ 1 .. (d− 1) do
4 Q ← Q+Q
5 if ad−1−i = 1 then
6 Q ← Q+ P

7 return Q

Lemma 3. Algorithm 1 computes mP for m ∈ N and P ∈ E(K) using at most 2 log2(m)−2
group operations in E(K).

Proof. The binary representation of an integer m uses at most log2(m) digits, so this gives
an upper bound on d. Each iteration of the for loop includes the computation of Q+Q, and
possibly the computation of Q+ P if the corresponding digit ai is 1, so we use at most two
group operations per repetition of the for loop, resulting in at most 2(d− 1) < 2 log2(m)− 2
group operations in total.

2

To see that the algorithm computes the right sum, we argue that after the j-th repetition
of the for loop, the value of the variable Q is (2j +

∑j
i=1 2

j−iad−1−i)P . We can interpret the
base case j = 0 as the state before the algorithm has executed the for loop at all, and where
the summation beside P in our induction formula is just 1, giving 1P = P . This is the value
that Q is assigned before executing the for loop, so all is well.

Now suppose that the algorithm has executed the for loop j > 0 times, and that the
inductive hypothesis holds for j − 1 repetitions of the for loop. Then at the end of the
previous repetition, Q has value (2j−1 +

∑j−1
i=1 2

j−1−iad−1−i)P . Adding this value of Q to
itself has the effect of multiplying the coefficient by 2, giving

Q+Q =
(
2j +

j−1∑
i=1

2j−iad−1−i

)
P

The subsequent if statement has the effect of adding ad−1−jP to Q, giving

Q+ ad−1−jP =
(
2j +

j−1∑
i=1

2j−iad−1−i + ad−1−j

)
P =

(
2j +

j∑
i=1

2j−iad−1−i

)
P

Thus Q again has the desired value after the j-th repetition of the for loop. The resulting
value of Q returned after d− 1 repetitions can be seen to be mP as desired.

The takeaway from this algorithm is that the operation of “multiplying P by m” can
be accomplished in time logarithmic in the number m being multiplied — fast! We will see
next that the inverse operation is (probably) computationally much more difficult, and that
this (probable) fact is the foundation of a large body of cryptographic practice.

The Discrete Logarithm Problem

The fundamental concept which makes elliptic curve groups useful in modern cryptography
is the so-called discrete logarithm.

Definition 4. Let G be an abelian group, and let g, h ∈ G. The discrete logarithm
problem for G is the problem of finding an exponent m such that gm = h. Such an
exponent is sometimes denoted logg(h). If G = E(Fq) is the elliptic curve group for some
elliptic curve over a finite field Fq, then finding anm, given P,Q ∈ E(Fq), such that Q = mP ,
is called the elliptic curve discrete logarithm problem, or ECDLP.

In a variety of abelian groups, the discrete logarithm problem is considered to be hard
to compute. In a group where this is the case, exponentiating a generator g to a power a
representing a piece of data can be thought of as a sort of “hiding” operation on this data;
it faithfully represents the value of a inside the group, but the actual value of a can’t be
retrieved from this representation.

The meaning of the word “hard” often depends on the application, and typically is related
to the computational capabilities of potential adversaries of a cryptographic system. It will
be helpful to recall a few definitions describing the asymptotic growth of functions in order
to give a reasonable definition.

3

Definition 5. Let f : R+ → R. Then f is said to have:

• At most polynomial growth, or sometimes just polynomial growth, if there exists
k ∈ N such that for all sufficiently large x, |f(x)| ≤ xk

• Superpolynomial growth if for every k ∈ N, for all sufficiently large x, |f(x)| ≥ xk

• Exponential growth if there exist real numbers r, s > 1 such that for all sufficiently
large x, rx ≤ |f(x)| ≤ sx

• Subexponential growth if for every real number r > 1, for all sufficiently large x,
|f(x)| ≤ rx

If g : R+ → R, then f is said to be:

• Big-O of g, written f = O(g), if there exists a positive constant C ∈ R+ such that
for all sufficiently large x, |f(x)| ≤ C |g(x)|

• Little-o of g, written f = o(g), if for every positive constant c ∈ R+, for all sufficiently
large x, |f(x)| ≤ c |g(x)|

A moderately encompassing, if theoretical, definition for difficulty of the discrete loga-
rithm problem is that a family of groups (Gα) has hard discrete logarithm if the complexity
of computing the discrete logarithm by any known means is super-polynomial as a function
of log |Gα|. Note that in general if a function f describes the time complexity of an algorithm
in terms of |G|, then the complexity in terms of log |G| is given by the function g(n) = f(2n).

We take a moment now to demonstrate that the discrete logarithm problem is not always
difficult.

Example 6. (Easy discrete logarithm) Let G = (Z/pZ,+) be the additive group of the
integers modulo p for a prime number p, and let a, b ∈ Z/nZ. If b = 0 then we can write
b = 0 · a, giving a discrete logarithm of 0. If b ̸= 0 but a = 0, then the discrete log of
b with respect to a doesn’t exist. If a, b ̸= 0, then we can compute the discrete log of b
by computing the multiplicative inverse of a in Z/pZ, and multiplying b by this element:
(a−1b)a = b. Computing a multiplicative inverse takes time logarithmic in p using the
extended Euclidean algorithm, so this approach is polynomial in log p.

The task of identifying abelian groups which have “hard” discrete logarithm is, in fact,
challenging and quite subtle. Note that our definition for difficulty refers to the “fastest
algorithm known” for solving a particular instance of the discrete log problem. This hints
at a fundamental weakness in our current collective understanding, namely, that there is a
lack of theoretical results giving computational lower bounds on computing discrete logs.
Thus, the best meter that we have available is our algorithmic state-of-the-art for solving
the problem, which is intrinsically a messy ruler to measure groups against. We discuss in
operational terms only a sampling of these algorithms.

In the following, consider the DLP for a group G containing n elements. Some approaches
for solving the discrete logarithm problem apply for arbitrary abelian groups, without regard
to any other features of their structure. For instance, the naive approach to solving the DLP

4

for g, h ∈ G is to raise g to successive powers until you find an exponent giving h; this will
take, on average, n/2 group operations to compute.

Several algorithms for solving the discrete logarithm problem for general groups make use
of variants of the combinatorial “birthday paradox” in order to simplify the computation.
These include:

• The baby-step giant-step algorithm solves the DLP using time and space O(
√
n)

• The Pollard rho and Pollard kangaroo algorithms are randomized algorithms which
solve the DLP using time O(

√
n), and very low space

Importantly, an algorithm running in time O(
√
n) does not violate “hardness” of the

discrete logarithm problem, since
√
n still grows asymptotically more quickly than (log n)k

for any fixed k. In fact,
√
n is exponential as a function of log n:

√
n =
√
2logn = (

√
2)logn

Thus these general algorithms for solving the DLP for any abelian group work in exponential
time as a function of log n.

Another algorithm for the DLP working for arbitrary abelian groups is the Pohlig-
Hellman algorithm, which makes use of the Chinese remainder theorem to reduce the com-
plexity of the computation based on the factorization of the group order. Specifically, if
n = pe11 · · · p

ek
k , then

• The Pohlig-Hellman algorithm solves the DLP using time O(
∑

i ei(log n+
√
pi))

Thus, when the group order n has only small prime factors (say no larger than (log n)k for
some integer k), Pohlig-Hellman is a polynomial-time algorithm to solve the DLP on G,
meaning that G does not have hard discrete logarithm problem. However, if G has prime
order, or if the order at least has a large prime factor, then this approach is ineffective.

The situation is a bit different if we specialize to the multiplicative subgroup of a finite
field. In this case, there are specialized algorithms which run much faster, in subexponential
time. These include:

• The index calculus algorithm solves the DLP for F×
q in time

exp
((√

2 + o(1)
)
(log q)1/2(log log q)1/2

)
• The function field sieve algorithm solves the DLP for F×

q in time estimated (but not
proven) to be approximately

exp
((

3
√
64/9 + o(1)

)
(log q)1/3(log log q)2/3

)
This latter class of algorithms explains in part why elliptic curve groups are useful in

modern cryptography as a source of abelian groups with hard discrete logarithms: they
lack the structure present in finite field multiplicative groups enabling specialized solutions,
so no algorithms are known which solve the ECDLP for arbitrary elliptic curve groups in
subexponential time.

5

Elliptic Curve Pairings

We now discuss in general terms a construction, the elliptic curve pairing, which draws an
important connection between the ECDLP for certain elliptic curve groups, and the DLP in
the multiplicative group of a related finite field. We will see that this produces a valuable
tool for cryptographic applications, but also a new attack vector for discrete log hardness in
the relevant elliptic curve groups.

Definition 7. Let G and Gt be cyclic groups of equal cardinality n. A map e : G×G→ Gt

is said to be bilinear if for all u, v ∈ G and all a, b ∈ {0, 1, . . . , n− 1},

e(ua, vb) = e(u, v)ab

A bilinear map is called non-degenerate if for any generator g ofG, we do not have e(g, g) =
1Gt . A non-degenerate bilinear map is sometimes called a pairing, since it associates an
element of Gt to each pair of elements in G.

In some settings, the domain of a pairing may be chosen to be a tuple of elements from
two separate groups G1 and G2 with the same cardinality as Gt, as this flexibility can allow
for more efficiently computable maps. If G1 = G2 as in the above definition, then the pairing
is called symmetric, and otherwise it is called asymmetric.

On the topic of constructing pairings, note that two cyclic groups of the same order
are isomorphic, so theoretically a pairing can be defined on any cyclic group by mapping
it to a group with easy discrete logarithm such as Z/nZ, and implementing an appropriate
pairing in this group. However, this is essentially finding a discrete logarithm in the original
group, which as we have seen, is thought to be computationally difficult for some groups.
Thus this approach does not typically produce an efficiently computable pairing for the
original group. In particular, there are some (many) concrete cyclic groups for which a
computationally efficient pairing has yet to be identified, and whose discovery would be
surprising to cryptographers.

If E is an elliptic curve group over a finite field Fq, then the group G for a pairing is
typically taken to be a cyclic subgroup E with prime order different than the characteristic
of Fq. In this case, a pairing on G is usually derived from one of two theoretical constructions
on elliptic curves, the Weil pairing and the Tate pairing, whose background and derivation
are highly technical and beyond the scope of our discussion.

The group Gt associated with an elliptic curve pairing is usually a subgroup of the
multiplicative group of Fqk , for an appropriate choice of k. Since Gt has prime order p′, this
choice of k has to satisfy the relation p′ | qk − 1, and the smallest k such that p′ divides
qk − 1 is called the embedding degree of p′ in Fq. In particular, pairing computations
using the Weil and Tate pairings involve doing some arithmetic in terms of elements in Fqk ,
so if k is large, these computations can be infeasible. This gives rise to the idea of a “pairing
friendly” elliptic curve over a finite field, whose group order has a large prime divisor with
small embedding degree such that pairings can be computed efficiently.

It has been shown under “plausible assumptions” that for most elliptic curves E over Fq,
a large prime divisor p′ of #E has embedding degree in Fq proportional to p′, meaning that
pairing computations are not feasible for elliptic curve groups of cryptographic size. Thus
pairing-friendly elliptic curve groups are special.

6

Example 8. A commonly employed elliptic curve group with hard discrete logarithm is
Curve25519. It is defined by a so-called montgomery equation1

y2 = x3 + 486662x2 + x

over a prime field Fp, where p = 2255− 19. The elliptic curve group has order 8 ∗ p′ where p′
is a large prime which can be written as 2252 + (2.7742 . . .) · 1037. The subgroup of order p′

is generated by a point with x-coordinate 9.
The embedding degree k of p′ over Fp is a very large integer, (1.2062 . . .) · 1075, which is

about p′/6, and so is of the expected order of magnitude. This means that computing an
elliptic curve pairing on Curve25519 would require working in a field represented by a tuple
of over 1075 coefficients in Fp.

2 This is, of course, not computationally feasible.

The existence of elliptic curve pairings leads to some very interesting consequences for
cryptographic applications.

One is that it introduces another method to attack the DLP, by using a pairing to
translate an instance of the discrete log problem in the original elliptic curve group into an
instance in the finite field Fqk . As we have seen, there are sub-exponential algorithms for
solving the DLP over a finite field, so if the embedding degree k of an elliptic curve group E
is too small, then the DLP in Fqk may be easier to solve than the DLP in E, reducing the
security of protocols relying on the difficulty of this computation.3

In particular, when choosing an elliptic curve group to work with which admits an efficient
pairing, it is important to select a group whose embedding degree is small enough for efficient
computation, but large enough that the discrete logarithm in the corresponding finite field
Fqk is at least as hard as in the original elliptic curve group. Usually, parameters are selected
so that these discrete logarithms are about equally difficult with the best known algorithms,
which optimizes for computational efficiency while at the same time preserving the discrete
log difficulty of the group.

Another important consequence of pairings is that if G is a cyclic cryptographic group
which admits an efficient pairing e to Gt, then the pairing allows us to compare products
“in the exponent”. In more detail, if g is a generator for G, then difficulty of the discrete
logarithm means that for an integer a, it is computationally infeasible to determine a when
given only the group element ga. This means that if a represents some secret data, then
raising g to the a-th power acts as a sort of “hiding” operation on the data.

For integers a, b and c, if given ga, gb, and gc, it is possible to check that c = a+b without
knowing these numbers, by checking that the product gagb is equal to gc. However, it is not
generally possible to check whether c = ab given only these values. If you are able to solve

1This representation is in contrast with the standard short Weierstrass equation, and elliptic curves which
can be expressed by an equation of this form allow a nice fixed-time algorithm for computing products,
called the Montgomery ladder. This is important for various applications in which variable time execution
of elliptic curve computations allow for a type of attack called a “side-channel attack” which uses variations
in computation time to exfiltrate cryptographic secrets from otherwise secure protocols.

2Some work has been done to reduce the size of computations in the corresponding group Gt by using
the fact that Gt itself is only of size p, and so in theory could be represented using p bits. However, the best
that has been accomplished reduces the size of representation by at most a small integer factor, which does
not change the feasibility of the computation.

3One attack making use of this observation is called the “MOV” attack.

7

the discrete log problem with base g, then this problem is easy; compute the discrete logs a,
b and c, and check if the product relation is satisfied. Lacking access to an efficient solution
to the discrete logarithm, the task becomes more difficult.

The following notions are useful when talking about the security properties of a cryp-
tographic group related to these product comparisons. The computational Diffie-Hellman
(CDH) problem asks us to compute a product in the exponent for a given group. More
specifically, given a random generator g of a cyclic group G, as well as powers ga and gb

chosen randomly, we are asked to compute the group element gab. The related decisional
Diffie-Hellman (DDH) problem asks us to instead only decide whether a given group element
is equal to gab: given a random generator g of G, random powers ga and gb, and an element
h which is with equal probability either gab or a random power gc, decide whether h = gab.
The group G is said to satisfy the CDH assumption if no efficient algorithm solves the
computational Diffie-Hellman problem, and it is said to satisfy the DDH assumption if no
efficient algorithm solves the decisional Diffie-Hellman problem.4

Thus, in these terms, an efficient solution to the discrete log problem immediately solves
the computational and decisional Diffie-Hellman problems. On the other hand, an effi-
cient pairing on a cryptographic group with hard discrete logarithm produces an interesting
middle-ground between the two problems: to check if h = gab in the decisional Diffie-Hellman
problem, it is enough to check that

e(ga, gb) = e(g, h)

Thus the pairing provides a ready solution to the DDH problem, but says nothing useful
about the CDH problem, i.e. this computation doesn’t give an obvious way to find gab when
given only ga and gb. A group admitting an efficient pairing therefore does not satisfy the
decisional Diffie-Hellman assumption, but may still satisfy the computational Diffie-Hellman
assumption. For a group satisfying only the CDH assumption, we therefore find ourselves
at an interesting state of affairs: somebody given elements g, ga, gb, and h can easily verify
that h = gab, but only somebody knowing the exponents a and b themselves can actually
compute gab. This property will be useful later when we will use discrete logarithms in such
groups to produce efficient polynomial and vector commitment schemes, which will be central
to the succinctness part of SNARK protocols.

4A bit more work needs to go into defining these assumptions rigorously in order to capture the fundamen-
tally asymptotic property of an algorithm being “efficient”. Specifically, the property must be defined with
respect to an infinite family of cyclic groups and a probabilistic random selection function which generates,
for a given n, a “random group from the family of size at most n and a random generator of this group”.

8

