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Finite Fields

We are now ready to present the construction and full classification of finite fields.

Proposition 1. Let K be a finite field. Then K is a field extension of Z/pZ for some prime
number p.

Proof. Let ¢ : Z — K be the ring homomorphism which maps a positive integer n to the sum
14+ 14---41 of n copies of 1 in K, and a negative integer n to —p(—n). Then by the first
isomorphism theorem, im ¢ is isomorphic to Z/ ker ¢. Since K is finite, the quotient Z/ ker ¢
must be finite, so ker ¢ # {0}, and must be equal to (m) for a positive integer m. Then m
cannot be 1 since this would imply that ¢(1) = 1 = 0, but this is never the case in a field. If
m is composite, say m = ab with a,b < m, then this implies that ¢(ab) = ¢(a)p(b) = 0in K,
which contradicts that the nonzero elements ¢(a) and ¢(b) have multiplicative inverses in K.
Thus we must have m = p for somep rime number p, so im ¢ is a subfield of K isomorphic
to Z/pZ.

O

If K is any field, the ring homomorphism Z — K mapping the integer 1 to the field
element 1 has kernel equal to an ideal (m) C Z. The number m is called the characteristic
of the field K. If m > 0 then m = p for some prime number p by the above reasoning, and
K contains a copy of Z/pZ. If m = 0, then instead K contains a copy of Q. In each case
this subfield is called the prime subfield of K.

Proposition 2. Let K be a finite field with prime subfield F' = Z/pZ. Then |K| = p" for
some positive integer r.

Proof. The set K with addition operation inherited from its field structure is an additive
abelian group, and with field multiplication by elements of F, it is a vector space over F.
Since K is finite, it must be a finite-dimensional vector space, since otherwise an F-basis
of K must be an infinite subset. Thus K is isomorphic to (and in particular in bijection
with) the vector space F" for some positive integer r. The result follows because F" has p”
elements. ]

The integer r in the above result is called the degree of K over F', written [K : F], and
is generally defined as the dimension of K as an F-vector space. In the following, we will let
q = p" denote a positive power of a prime number p.

Lemma 3. In a field K of order q, every element is a root of the polynomial x? — x.



Proof. Since K is a field, the nonzero elements of K form a multiplicative group of order
g—1. In particular, a nonzero element a has multiplicative order dividing ¢g—1 by Lagrange’s
Theorem, and thus satisfies a?~! = 1, implying that « is a root of 27 — z. The zero element
of K is also clearly a root. O

We will need the following lemma for the next argument.
Lemma 4. Let F =7Z/pZ. Then in Flx,y], (x +y)? = 29+ y? for any g =p", r > 0.

Proof. First note that for 1 < k < p — 1, the binomial coefficient (i) € Z is divisible by
p. This is because it can be written as p!/k!(p — k)!, and p clearly divides p! but not k! or
(p — k)!, so p must divide the whole expression.

In particular, this implies that the polynomial identity holds for ¢ = p: by the binomial
theorem, we have

Here, the last equality holds because each of the intermediate coefficients (i) is divisible by
p, and thus is equal to 0 as an element of F.

Now we complete the proof by induction on r. For r = 0, this is a trivial statement:
(r +y)t = 2! +y'. Forr > 0, we write

(@ +y)" = ((z+y) ) = (a )+ (Y

The second-to-last equality holds because (x 4+ y)? = 2P + y” is an identity of polynomials,
and so it also holds after substituting 27" ' and y? for z and y. O
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Proposition 5. There exists a finite field of order q for any prime power q = p".

Proof. Let L be an extension field of F' = Z/pZ in which z? — z splits into a product of
linear factors. Then L has characteristic p, so the derivative of 29 — x in L is

d/dz(2z? —z) = gz ' —1=—1

This implies that ¢ — x has no multiple root in L, and thus that the set K of roots of this
polynomial in L contains ¢ distinct elements. We now show that K is a subfield of L.

We need to show that K is closed under sums, products, additive and multiplicative
inverses, and contains 1. We see that 1 € K because 17 = 1. We also have —1 € K: if p = 2,
this is because —1 = 1 in F', and if p > 2, then this is because ¢ is odd, so (—1)? = —1.

Now let «, f € K, so that a? = « and ¢ = 3. Then we have

o (Sums) (a+ f)?=a?+ %= a+ (3 by previous lemma
e (Products) (af)? = 187 = af

e (Additive inverses) (—a)? = (—1)%4 = (—-1) - a = —«
(

e (Multiplicative inverses) (a™1)? = a9 = (a?) ! = a~! when a # 0
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]

Remark 6. The above argument that the roots of 9 — z in L form a subfield does not
rely on the fact that the polynomial splits into linear factors. More generally, in any field
of characteristic p, the same argument shows that the roots of ¢ — z (whichever ones are
present) will form a finite subfield of L.

Our next result will apply the structure theorem for finitely generated abelian groups, a
basic algebra result which we now state, but whose proof we will omit.

Theorem 7 (Structure Theorem for Finitely Generated Abelian Groups). Let G be an
abelian group admitting a finite set of generators. Then G can be uniquely expressed as a
direct sum

G227 & (Z/dZ)& - & (Z)dyL)

where each of the cyclic components has order at least 2, and d; divides d;, for each i. The
number r is called the rank of G, and the numbers dy, ..., d; are called the invariant factors.

Proposition 8. The multiplicative subgroup of a finite field K is cyclic.

Proof. Suppose K has order q. Then the multiplicative subgroup K* of nonzero elements
of K is an abelian group of order ¢ — 1. The structure theorem for finitely generated abelian
groups implies that K* can be written (additively) as a direct sum of nontrivial cyclic
subgroups:

K*=2(Z)dZ)® - & (Z)dZ)

where the order d; of each cyclic component divides the order d;; of the next. Let « € K*,
and write o« = (hy, ..., hi) as an element of the above direct sum. Then writing d = d, we
have

at = (dhy, ..., dh)

Since each of the components h; is an element of a cyclic group of order dividing d, we
conclude that dh; is the identity element 0 in Z/d;Z, and so a? is the identity element 1 of
K*. In particular, we see that every o € K* is a root of the polynomial ¢ — 1. However, a
polynomial of degree d has at most d roots, so |K*| =¢q—1 <d.

However, since K* = (Z/d1Z) @ - -- ® (Z/dyZ), the order of K* is given by dids - - - dy.
We can therefore conclude that dids---dp = ¢ — 1 < dg, so the only valid choice for the
invariant factors of K* is k =1 and d, = ¢— 1. Thus K* = Z/(q— 1)Z, which is cyclic. [

Proposition 9. There ezist irreducible polynomials over Z/pZ of any positive degree.

Proof. Let K be a finite field with degree r over its prime subfield F' = Z/pZ, and let f be
the irreducible polynomial over F' of a cyclic generator a of K*. Then Flz]/(f) = Flo] = K.
However, F[z]/(f) is a vector space of dimension deg f over F, so |F|*¢ = |Flz]/(f)| =
|K| = |F|", and we conclude that deg f = r. O

Proposition 10. Any two finite fields of equal order are isomorphic.



Proof. Let K and K’ be two finite fields of equal order ¢ = p", let F' be their common prime
subfield, and let a be a generator for K* with irreducible polynomial f over F'. We can see
that f divides 7 — x because « is a root of the latter. In K’, the polynomial x¢ — = splits
into a product of linear factors, so f does as well. In particular, f has a root o/ € K’, and
f is the irreducible polynomial of o' over F' by uniqueness. Then we have

K =Fla] = Fla]/(f) = Flo'] € K’
Comparing cardinalities gives us equality in the last inclusion, so the result follows. O]

Proposition 11. A field of order p" contains a subfield of order p* if and only if k| r.

Proof. Let K/K' be a field extension of degree d with |K| = p" and |K’'| = p*. Then K
is a K’-vector space of dimension d, and thus is isomorphic to (K’)? as a vector space. In
particular, its cardinality is | K’ |d = (p*)4 = p*d so r = kd and k divides 7.

Now suppose r = kd for some d. Then we have

Pol=ph 1= (pf - 1)<p(d—1)lc FpU=Dk Lk 1)

so that ¢’ — 1 divides ¢ — 1. Since the multiplicative group of K is cyclic of order ¢ — 1, it has
an element (§ of order ¢’ — 1, and the ¢’ — 1 powers of § give ¢’ — 1 roots of the polynomial
27~1 — 1. Thus these powers along with 0 give the collection of ¢’ roots of the polynomial
27 — z in K. By the previous argument proving the existence of finite fields of all orders,
this collection of roots is a subfield of K of order ¢, as required. n

Proposition 12. The irreducible factors of x1 — x over F = Z/pZ are the irreducible poly-
nomials in F|x] whose degree divides r, each with multiplicity 1.

Proof. Let K be a finite field of order ¢, and let g € F[x] be an irreducible polynomial of
degree k. Suppose first that g divides x? — x. Then in particular, g can be represented as a
product of linear factors in K, since this is the case for ¢ — x. In particular, g has a root
f € K, and g is the irreducible polynomial of 8 over F'. This implies that F'[f] is a subfield
of K of order p*, and so as we have seen, k divides 7.

Conversely, suppose that k divides r. Then F|[z]/(g) is a field of order p* such that the
image of x under the quotient map is a root of g. By the previous proposition, K has a
subfield K’ of order p*, and since all fields of order p* are isomorphic, there is an isomorphism
from Fz]/(g) to K’. In particular, the image 5 of x in K’ is an element of K with irreducible
polynomial g. Since f is a root of 7 — x in K, we see that the irreducible polynomial g of
S divides z?7 — .

Lastly, each irreducible polynomial dividing x¢ — x has multiplicity 1 because any irre-
ducible having higher multiplicity would result in x? — z having a multiple root over K,
which is not the case since ¢ — x has ¢ distinct roots in K. O

Example 13. Over F = Z/3Z, the polynomial z° — x factors as:

P —r=z@+)(z-D@*+ D)@+ - 1) (2 -2 1)



In particular, this factorization gives a list of all of the irreducible polynomials of degrees 1
and 2 over F. Letting K = F[z]/(z* + 1), we have that K is a finite field with 9 elements,
given by

o, 1, -1, =z =z+1, z-1, -z, —-z+1, —-z-1

The multiplicative subgroup K* is cyclic of order 8. However, it is not generated by the
underlying variable 7, as can be seen by the computation: 7! = (z%)? = (—=1)? = 1. We can
see then that the multiplicative order of  is 4, so it doesn’t generate the entire multiplicative
group. However, we can check that (z + 1) = ((z + 1)?)?> = (—7)®> = —1 # 1. Since the
multiplicative order of an element divides the order of K*, the order of 4+ 1 must be 8.

The irreducible polynomial of a multiplicative generator of the multiplicative group of K
has degree equal to the dimension of K over F. Thus Z+ 1 must be a root of (exactly) one of
the three quadratic factors of 2% — . We can check that this is the case for the polynomial
>+ —1:

Z+1)*+@F+1)—-1=-74+2+1-1=0

Thus T + 1 has irreducible polynomial 22 + x — 1 over F. Now let L = Fy]/(y* +y — 1).
Since K and L are finite fields of equal order 9, they are isomorphic as fields. As usual,
the image 7 of y in L is a root of the quotient polynomial y? 4+ y — 1, and so this is the
irreducible polynomial of y. From the previous proof that finite fields of equal order are
isomorphic, we know that homomorphism taking Z + 1 to y (an element of L with the
same irreducible polynomial) is therefore an isomorphism. In particular, since we found
Z 4+ 1 to be a generator of K, it should be the case that 7 is a generator of L*. Indeed,
=) =(-y+1)?=(—y+1)+ 7+ 1= —1, so the multiplicative order of 7 is 8.

To compute this isomorphism explicitly, express a nonzero element « in K as a polynomial
using powers of 4+ 1. This is always possible, at the very least by expressing o as a power
of £+ 1 using the fact that 4 1 is a multiplicative generator of K *. Then the image of this
element is obtained by replacing all powers of Z + 1 in this polynomial representation with
a corresponding power of ¢, keeping all coefficients the same.



