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Finite Fields

We are now ready to present the construction and full classification of finite fields.

Proposition 1. Let K be a finite field. Then K is a field extension of Z/pZ for some prime
number p.

Proof. Let φ : Z → K be the ring homomorphism which maps a positive integer n to the sum
1+ 1+ · · ·+ 1 of n copies of 1 in K, and a negative integer n to −φ(−n). Then by the first
isomorphism theorem, imφ is isomorphic to Z/ kerφ. Since K is finite, the quotient Z/ kerφ
must be finite, so kerφ ̸= {0}, and must be equal to (m) for a positive integer m. Then m
cannot be 1 since this would imply that φ(1) = 1 = 0, but this is never the case in a field. If
m is composite, say m = ab with a, b < m, then this implies that ϕ(ab) = ϕ(a)ϕ(b) = 0 in K,
which contradicts that the nonzero elements ϕ(a) and ϕ(b) have multiplicative inverses in K.
Thus we must have m = p for somep rime number p, so imφ is a subfield of K isomorphic
to Z/pZ.

If K is any field, the ring homomorphism Z → K mapping the integer 1 to the field
element 1 has kernel equal to an ideal (m) ⊆ Z. The number m is called the characteristic
of the field K. If m > 0 then m = p for some prime number p by the above reasoning, and
K contains a copy of Z/pZ. If m = 0, then instead K contains a copy of Q. In each case
this subfield is called the prime subfield of K.

Proposition 2. Let K be a finite field with prime subfield F = Z/pZ. Then |K| = pr for
some positive integer r.

Proof. The set K with addition operation inherited from its field structure is an additive
abelian group, and with field multiplication by elements of F , it is a vector space over F .
Since K is finite, it must be a finite-dimensional vector space, since otherwise an F -basis
of K must be an infinite subset. Thus K is isomorphic to (and in particular in bijection
with) the vector space F r for some positive integer r. The result follows because F r has pr

elements.

The integer r in the above result is called the degree of K over F , written [K : F ], and
is generally defined as the dimension of K as an F -vector space. In the following, we will let
q = pr denote a positive power of a prime number p.

Lemma 3. In a field K of order q, every element is a root of the polynomial xq − x.
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Proof. Since K is a field, the nonzero elements of K form a multiplicative group of order
q−1. In particular, a nonzero element α has multiplicative order dividing q−1 by Lagrange’s
Theorem, and thus satisfies αq−1 = 1, implying that α is a root of xq − x. The zero element
of K is also clearly a root.

We will need the following lemma for the next argument.

Lemma 4. Let F = Z/pZ. Then in F [x, y], (x+ y)q = xq + yq for any q = pr, r ≥ 0.

Proof. First note that for 1 ≤ k ≤ p − 1, the binomial coefficient
(
p
k

)
∈ Z is divisible by

p. This is because it can be written as p!/k!(p − k)!, and p clearly divides p! but not k! or
(p− k)!, so p must divide the whole expression.

In particular, this implies that the polynomial identity holds for q = p: by the binomial
theorem, we have

(x+ y)p = xp +

(
p

1

)
xp−1y +

(
p

2

)
xp−2y2 + · · ·+

(
p

p− 1

)
xyp−1 + yp = xp + yp

Here, the last equality holds because each of the intermediate coefficients
(
p
k

)
is divisible by

p, and thus is equal to 0 as an element of F .
Now we complete the proof by induction on r. For r = 0, this is a trivial statement:

(x+ y)1 = x1 + y1. For r > 0, we write

(x+ y)p
r

=
(
(x+ y)p

r−1)p
=

(
xpr−1

+ yp
r−1)p

= (xpr−1

)p + (yp
r−1

)p = xpr + yp
r

The second-to-last equality holds because (x + y)p = xp + yp is an identity of polynomials,
and so it also holds after substituting xpr−1

and yp
r−1

for x and y.

Proposition 5. There exists a finite field of order q for any prime power q = pr.

Proof. Let L be an extension field of F = Z/pZ in which xq − x splits into a product of
linear factors. Then L has characteristic p, so the derivative of xq − x in L is

d/dx
(
xq − x

)
= qxq−1 − 1 = −1

This implies that xq − x has no multiple root in L, and thus that the set K of roots of this
polynomial in L contains xq distinct elements. We now show that K is a subfield of L.

We need to show that K is closed under sums, products, additive and multiplicative
inverses, and contains 1. We see that 1 ∈ K because 1q = 1. We also have −1 ∈ K: if p = 2,
this is because −1 = 1 in F , and if p > 2, then this is because q is odd, so (−1)q = −1.

Now let α, β ∈ K, so that αq = α and βq = β. Then we have

• (Sums) (α + β)q = αq + βq = α + β by previous lemma

• (Products) (αβ)q = αqβq = αβ

• (Additive inverses) (−α)q = (−1)qαq = (−1) · α = −α

• (Multiplicative inverses) (α−1)q = α−q = (αq)−1 = α−1 when α ̸= 0
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Remark 6. The above argument that the roots of xq − x in L form a subfield does not
rely on the fact that the polynomial splits into linear factors. More generally, in any field
of characteristic p, the same argument shows that the roots of xq − x (whichever ones are
present) will form a finite subfield of L.

Our next result will apply the structure theorem for finitely generated abelian groups, a
basic algebra result which we now state, but whose proof we will omit.

Theorem 7 (Structure Theorem for Finitely Generated Abelian Groups). Let G be an
abelian group admitting a finite set of generators. Then G can be uniquely expressed as a
direct sum

G ∼= Zr ⊕ (Z/d1Z)⊕ · · · ⊕ (Z/dkZ)

where each of the cyclic components has order at least 2, and di divides di+1 for each i. The
number r is called the rank of G, and the numbers d1, . . . , dk are called the invariant factors.

Proposition 8. The multiplicative subgroup of a finite field K is cyclic.

Proof. Suppose K has order q. Then the multiplicative subgroup K× of nonzero elements
of K is an abelian group of order q− 1. The structure theorem for finitely generated abelian
groups implies that K× can be written (additively) as a direct sum of nontrivial cyclic
subgroups:

K× ∼= (Z/d1Z)⊕ · · · ⊕ (Z/dkZ)

where the order di of each cyclic component divides the order di+1 of the next. Let α ∈ K×,
and write α = (h1, . . . , hk) as an element of the above direct sum. Then writing d = dk, we
have

αd = (dh1, . . . , dhk)

Since each of the components hi is an element of a cyclic group of order dividing d, we
conclude that dhi is the identity element 0 in Z/diZ, and so αd is the identity element 1 of
K×. In particular, we see that every α ∈ K× is a root of the polynomial xd − 1. However, a
polynomial of degree d has at most d roots, so |K×| = q − 1 ≤ d.

However, since K× ∼= (Z/d1Z) ⊕ · · · ⊕ (Z/dkZ), the order of K× is given by d1d2 · · · dk.
We can therefore conclude that d1d2 · · · dk = q − 1 ≤ dk, so the only valid choice for the
invariant factors of K× is k = 1 and dk = q− 1. Thus K× ∼= Z/(q− 1)Z, which is cyclic.

Proposition 9. There exist irreducible polynomials over Z/pZ of any positive degree.

Proof. Let K be a finite field with degree r over its prime subfield F = Z/pZ, and let f be
the irreducible polynomial over F of a cyclic generator α of K×. Then F [x]/(f) ∼= F [α] = K.
However, F [x]/(f) is a vector space of dimension deg f over F , so |F |deg f = |F [x]/(f)| =
|K| = |F |r, and we conclude that deg f = r.

Proposition 10. Any two finite fields of equal order are isomorphic.
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Proof. Let K and K ′ be two finite fields of equal order q = pr, let F be their common prime
subfield, and let α be a generator for K× with irreducible polynomial f over F . We can see
that f divides xq − x because α is a root of the latter. In K ′, the polynomial xq − x splits
into a product of linear factors, so f does as well. In particular, f has a root α′ ∈ K ′, and
f is the irreducible polynomial of α′ over F by uniqueness. Then we have

K = F [α] ∼= F [x]/(f) ∼= F [α′] ⊆ K ′

Comparing cardinalities gives us equality in the last inclusion, so the result follows.

Proposition 11. A field of order pr contains a subfield of order pk if and only if k | r.

Proof. Let K/K ′ be a field extension of degree d with |K| = pr and |K ′| = pk. Then K
is a K ′-vector space of dimension d, and thus is isomorphic to (K ′)d as a vector space. In
particular, its cardinality is |K ′|d = (pk)d = pkd, so r = kd and k divides r.

Now suppose r = kd for some d. Then we have

pr − 1 = pkd − 1 = (pk − 1)(p(d−1)k + p(d−2)k + · · · pk + 1)

so that q′−1 divides q−1. Since the multiplicative group of K is cyclic of order q−1, it has
an element β of order q′ − 1, and the q′ − 1 powers of β give q′ − 1 roots of the polynomial
xq′−1 − 1. Thus these powers along with 0 give the collection of q′ roots of the polynomial
xq′ − x in K. By the previous argument proving the existence of finite fields of all orders,
this collection of roots is a subfield of K of order q′, as required.

Proposition 12. The irreducible factors of xq − x over F = Z/pZ are the irreducible poly-
nomials in F [x] whose degree divides r, each with multiplicity 1.

Proof. Let K be a finite field of order q, and let g ∈ F [x] be an irreducible polynomial of
degree k. Suppose first that g divides xq − x. Then in particular, g can be represented as a
product of linear factors in K, since this is the case for xq − x. In particular, g has a root
β ∈ K, and g is the irreducible polynomial of β over F . This implies that F [β] is a subfield
of K of order pk, and so as we have seen, k divides r.

Conversely, suppose that k divides r. Then F [x]/(g) is a field of order pk such that the
image of x under the quotient map is a root of g. By the previous proposition, K has a
subfieldK ′ of order pk, and since all fields of order pk are isomorphic, there is an isomorphism
from F [x]/(g) to K ′. In particular, the image β of x in K ′ is an element of K with irreducible
polynomial g. Since β is a root of xq − x in K, we see that the irreducible polynomial g of
β divides xq − x.

Lastly, each irreducible polynomial dividing xq − x has multiplicity 1 because any irre-
ducible having higher multiplicity would result in xq − x having a multiple root over K,
which is not the case since xq − x has q distinct roots in K.

Example 13. Over F = Z/3Z, the polynomial x9 − x factors as:

x9 − x = x(x+ 1)(x− 1)(x2 + 1)(x2 + x− 1)(x2 − x− 1)
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In particular, this factorization gives a list of all of the irreducible polynomials of degrees 1
and 2 over F . Letting K = F [x]/(x2 + 1), we have that K is a finite field with 9 elements,
given by

0, 1, −1, x̄, x̄+ 1, x̄− 1, −x̄, −x̄+ 1, −x̄− 1

The multiplicative subgroup K× is cyclic of order 8. However, it is not generated by the
underlying variable x̄, as can be seen by the computation: x̄4 = (x̄2)2 = (−1)2 = 1. We can
see then that the multiplicative order of x̄ is 4, so it doesn’t generate the entire multiplicative
group. However, we can check that (x̄ + 1)4 = ((x̄ + 1)2)2 = (−x̄)2 = −1 ̸= 1. Since the
multiplicative order of an element divides the order of K×, the order of x̄+ 1 must be 8.

The irreducible polynomial of a multiplicative generator of the multiplicative group of K
has degree equal to the dimension of K over F . Thus x̄+1 must be a root of (exactly) one of
the three quadratic factors of x9 − x. We can check that this is the case for the polynomial
x2 + x− 1:

(x̄+ 1)2 + (x̄+ 1)− 1 = −x̄+ x̄+ 1− 1 = 0

Thus x̄ + 1 has irreducible polynomial x2 + x − 1 over F . Now let L = F [y]/(y2 + y − 1).
Since K and L are finite fields of equal order 9, they are isomorphic as fields. As usual,
the image ȳ of y in L is a root of the quotient polynomial y2 + y − 1, and so this is the
irreducible polynomial of ȳ. From the previous proof that finite fields of equal order are
isomorphic, we know that homomorphism taking x̄ + 1 to ȳ (an element of L with the
same irreducible polynomial) is therefore an isomorphism. In particular, since we found
x̄ + 1 to be a generator of K×, it should be the case that ȳ is a generator of L×. Indeed,
ȳ4 = (ȳ2)2 = (−ȳ + 1)2 = (−ȳ + 1) + ȳ + 1 = −1, so the multiplicative order of ȳ is 8.

To compute this isomorphism explicitly, express a nonzero element α inK as a polynomial
using powers of x̄+ 1. This is always possible, at the very least by expressing α as a power
of x̄+1 using the fact that x̄+1 is a multiplicative generator of K×. Then the image of this
element is obtained by replacing all powers of x̄ + 1 in this polynomial representation with
a corresponding power of ȳ, keeping all coefficients the same.
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