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Algebraic Field Extensions

We now turn to the topic of field extensions. In the subsequent discussion we will be
interested in the particular type of ring quotient which produces a field, which is characterized
by the following.

Definition 1. An ideal I of a commutative ring R is called a maximal ideal if I is a proper
subset of R, but there is no ideal J satisfying I ⊊ J ⊊ R.

Proposition 2. Let R be a commutative ring, and let I ⊆ R be an ideal. Then the quotient
ring R/I is a field if and only if I is maximal.

Proof. Suppose that I is a maximal ideal of R, and suppose that a+ I is a nonzero element
in R/I. Then a /∈ I, so the ideal J = (a)+I is strictly larger than I, and since I is maximal,
we must have J = R.

In particular, 1 ∈ J , so we can write 1 = r · a + b for some elements r ∈ R and b ∈ I.
Then we have

(r + I) · (a+ I) = (r · a) + I = (1− b) + I = 1 + I,

so a+ I is invertible in R/I, with inverse r + I. This implies R/I is a field.
On the other hand, suppose that R/I is a field, and suppose that J is an ideal of R

strictly larger than I. If a ∈ J \ I, then a+ I is a nonzero element of R/I, and so it has an
inverse r + I satisfying

(r + I) · (a+ I) = 1 + I.

This means that 1 = r · a+ b for some element b ∈ I. However, since I ⊆ J , the right hand
side of the equality is an element of J , so we see that 1 ∈ J , and thus R = (1) ⊆ J . Since J
was an arbitrary ideal larger than I, we conclude that I is maximal.

We will be particularly interested in extending an existing field with a new element by
taking the quotient of a polynomial ring by a maximal ideal. In this setting, the maximal
ideals are characterized by the following.

Proposition 3. Let F be a field, and let I = (f) ⊆ F [x]. Then I is a maximal ideal if and
only if f is irreducible.

Proof. If f is a constant polynomial, then both I is not maximal and f is not irreducible,
so assume f is non-constant.

Suppose first that I is not maximal. Then there exists an ideal J = (g) with I ⊊ J ⊊ F [x].
The first inclusion implies that f = gh for some non-invertible polynomial h and g, h ̸= 0,
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while the second inclusion implies that g is non-invertible. Since g and h are non-zero and
non-invertible, they are non-constant, so f = gh is a representation of f as a product of
non-constant polynomials in F [x].

Now suppose that f is not irreducible. Then f = gh for two non-constant polynomials
g and h. Suppose that we had g ∈ (f). Then we could write g = fh∗ = ghh∗ for some
polynomial h∗, which would imply g(1 − hh∗) = 0, and thus hh∗ = 1. This would further
imply h is invertible, and therefore is a constant polynomial, a contradiction. Likewise, since
g is non-constant, it is not invertible, so there is no polynomial g∗ such that gg∗ = 1, which
implies that 1 /∈ (g). This shows that the ideal J = (g) lies strictly between I and F [x], so
I is not maximal.

Definition 4. Let K be a field and F ⊆ K. If F is a field with respect to the arithmetic
operations inherited from K, then we say that K is a field extension or an extension
field of F , and write K/F (read as “K over F”).

An algebraic structure which will be useful for studying field extensions is that of the
vector space, defined next. Specifically, it is straightforward to check that when K/F is a
field extension, K can naturally be interpreted as a vector space with underlying field F .

Definition 5. A vector space over a field F is an additive abelian group V of vectors,
along with a scalar multiplication rule F × V → V denoted “·”, satisfying:

• a · (b · v) = (ab) · v

• 1 · v = v

• a · (u+ v) = a · u+ a · v

• (a+ b) · v = a · v + b · v

A set B ⊆ V is called a basis of V if every element v ∈ V can be written uniquely as a finite
sum of basis elements multiplied by field elements (a linear combination):

v =
n∑

i=1

ai · bi

Every vector space has a basis. Any two bases have the same cardinality, and V is called
finite-dimensional if this cardinality is finite. In this case, the dimension of V is the size
of a basis set. An r-dimensional vector space over a field F is isomorphic to the vector space
F r of length-r vectors with elements in F and component-wise scalar multiplication, meaning
that there is a bijection V → F r which preserves vector addition and scalar multiplication.

Remark 6. An equivalent way to define a vector space over a field F is as an abelian group
V along with a ring homomorphism F → End(V ). The abelian group V describes the
vectors and their addition operation, and the homomorphism F → End(V ) describes the
scalar multiplication by elements of F .

Definition 7. Let K/F be a field extension, and let α ∈ K. Then α is called algebraic
over F if it is the root some nonzero polynomial with coefficients in F . Otherwise, it is called
transcendental over F .
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We will primarily be concerned with algebraic field extensions, that is, extensions with-
out transcendental elements. The following two important results describe how algebraic
elements of a field extension relate to the base field. In general terms: a monic irreducible
polynomial may be used to extend a base field with a new algebraic element, an algebraic
element of a field extension may be succinctly described by a unique monic irreducible poly-
nomial, and these operations may be suitably interpreted as inverse to each other.

Proposition 8. Let F be a field, and let f be an irreducible polynomial in F [x]. Then:

• The ring K = F [x]/(f) is an extension field of F , and the image x̄ of x under the
quotient map is a root of f in K

• The dimension of K as a vector space over F is equal to the degree of f , and the
monomials 1, x̄, x̄2, . . . , x̄deg f−1 give a basis

Proof. Since f is irreducible over F , (f) is a maximal ideal in F [x], so K = F [x]/(f) is a
field. The quotient map F [x] → F [x]/(f) restricts to a homomorphism φ : F → F [x]/(f)
on the subring F , and since f has positive degree, no nonzero element of F maps to 0 in
the quotient. Thus the kernel of φ is trivial, and by the first isomorphism theorem, F is
isomorphic to its image in K. Evaluating the polynomial f at the image x̄ of x in K just
gives the additive coset f + (f), which is the zero element. Thus x̄ is a root of f in K.

In the following, let d = deg f . We now show that the monomials 1, x̄, . . . , x̄d−1 give a
vector space basis of K over F . Note first that any additive coset g+(f) may be represented
by the polynomial r given by the remainder after division of g by f . In more detail, if
g = qf + r for some polynomials q, r with deg r < d, then g − r = qf ∈ (f), and so
g + (f) = r + (f). Because of the degree restriction on r, this gives a representation of
g + (f) as a linear combination of the monomials 1, x̄, . . . x̄d−1.

Suppose now that a linear relation holds for these monomials, that is, that there are
coefficients a0, . . . , ad−1 ∈ F such that

∑d−1
i=0 aix̄

i = 0. This sum can be represented as the

additive coset p+(f), where p(x) =
∑d−1

i=0 aix
i ∈ F [x], so we have p+(f) = (f). This means

that there exists a polynomial q such that p = qf . If q ̸= 0, then qf has degree at least d.
However, since p has degree strictly smaller than this, we must have q = 0, and thus p = 0.
This implies that all of the coefficients ai were themselves zero, so only the trivial linear
relation holds between the monomials 1, x̄, . . . , x̄d−1, and thus the monomials are linearly
independent over F .

Proposition 9. Let K/F be a field extension, and let α ∈ K be an algebraic element. Then
there exists a unique monic irreducible polynomial f ∈ F [x] such that α is a root of f .
Additionally:

• If g is any polynomial in F [x] that has α as a root, then f divides g

• The image F [α] of F [x] under the evaluation map at α is a subfield of K isomorphic
to F [x]/(f)

Proof. Let φ : F [x] → K be the evaluation map at α, and let I be the kernel of φ. Since
F [x] is a principal ideal domain, I = (f) for some polynomial f , and since α is algebraic,
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we know that I is nonzero, and thus that f is a non-constant polynomial. By multiplying f
by the inverse of its leading coefficient, we may assume without loss of generality that f is
monic. By the definition of φ, f(α) = 0 in K.

Suppose that f is not irreducible. Then f = gh for some non-constant polynomials
g, h ∈ F [x]. But this implies that f(α) = g(α)h(α) = 0, so since K is an integral domain,
we must have either g(α) = 0 or h(α) = 0. However, this implies that either g or h must
be an element of (f), which is impossible because f is of minimal degree among the non-
zero polynomials of (f), and g and h have smaller degree than f . We conclude that f is
irreducible.

Suppose now that g is any polynomial in F [x] with g(α) = 0. Then g is an element of
I, so it can be written as g = fh for some polynomial h (and so f divides g). If h is a
constant polynomial, then either h = 1, in which case g = f , or h ̸= 1, in which case g is not
monic. If h is a non-constant polynomial, then g = fh is a representation of g as a product
of non-constant polynomials, so h is not irreducible. Thus f is the unique monic irreducible
polynomial in F [x] which has α as a root.

Finally, note that the evaluation map φ at α has image F [α] and kernel (f), so F [α]
is a subring of K, and by the first isomorphism theorem, F [x]/(f) ≃ F [α]. Since (f) is
irreducible, both are fields.

Definition 10. The unique monic irreducible polynomial described above is called the ir-
reducible polynomial for α over F . The degree of this polynomial is called the degree of
α over F .

Example 11. Let F = Q and let f(x) = x3 − 2. Then f has no roots over Q, and so has
no linear factors, and thus has no irreducible factors of degree 1 or 2. This implies f is itself
irreducible over Q. Then Q can be extended with a new element which is a root of f by
taking the quotient K = Q[x]/(x3−2). As a vector space, K has dimension 3 over Q, and its
elements can be expressed in the form {a+bx+cx2 : a, b, c ∈ Q}. Sums in this representation
work component-wise without issue, and products need to be reduced by using the relation
x3 − 2 = 0 to replace any occurrences of x3 with 2. Noting that x is an element of K whose
cube is equal to 2, we can reasonably rename the variable as 3

√
2. In this case, we get the

field
Q[

3
√
2] = {a+ b

3
√
2 + c

3
√
4 : a, b, c ∈ Q}

with addition and multiplication inherited from the corresponding arithmetic in R.

Example 12. Let F = Q and K = R. Then K is an extension field of F . The number
α =

√
5 can be shown to be irrational, but it is a root of the monic irreducible polynomial

f(x) = x2 − 5, which is therefore its irreducible polynomial over Q. From this we know
that any polynomial with rational coefficients which has

√
5 as a root must have x2 − 5 as

a factor. Additionally, we know that Q[
√
5] is a field, and can be realized as the quotient

Q[x]/(x2−5). As a vector space this field can be described as Q[
√
5] = {a+ b

√
5 : a, b ∈ Q}.

Proposition 13. Let F be a field, and let f ∈ F [x] be a polynomial with positive degree.
Then there exists a field extension K of F such that f factors into a product of linear factors
over K.
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Proof. Suppose f has degree d, and factors as a product of k ≤ d irreducible polynomials
over F . We use induction on the number d − k. If d − k = 0, then f can be written as a
product of d irreducible factors, meaning that f is already a product of linear terms over F .

Suppose now that d− k > 0. Then f has some irreducible factor g of degree at least 2.
Letting F ′ = F [x]/(g), we know that F ′ is an extension field of F in which g has some root
α ∈ F ′. Thus over F ′, the polynomial g factors as g(x) = (x − α)h(x) for a non-constant
polynomial h ∈ F ′[x]. This means that f has strictly more irreducible factors over F ′ than
it has over F . By induction, there exists a field extension K of F ′ such that f factors into a
product of linear factors over K. Since F ′ extends F , K is also an extension field of F .
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