
Lecture Notes, Week 2
Math 480A2: Mathematics of Blockchain Protocols, Fall 2022

Lecturer: Bryan Gillespie

Commutative Rings and Fields

Due to the requirement of practical cryptography to work on real-world computers, cryp-
tographic tools make use of mathematical objects which can be represented using a finite
and controlled amount of information. This leads to the use of finite fields (also called
Galois fields), and discrete objects defined over them, as the fundamental mathematical
constructions used in cryptographic protocols. Over the next several weeks, we will study
the algebraic background required to construct and classify the finite fields, and to under-
stand their relation with polynomial rings.

Definition 1. A ring R is a set equipped with an addition operation (+) and a multiplication
operation (·) such that

• (R,+) is an abelian group with identity element written “0”

• (R, ·) is a monoid, meaning it is associative and has an identity element, written “1”

• Multiplication is distributive over addition

A ring is called a commutative ring if its multiplication operation is commutative.

Exercise 2. Write out the axioms of a ring R explicitly.

We will work primarily in the context of commutative rings.

Definition 3. Let R be a nonzero commutative ring. An element a ∈ R is called a unit
if there exists a nonzero element b ∈ R such that a · b = 1, or in other words, if a has a
multiplicative inverse. The ring R is called a field if every nonzero element is a unit.

Example 4. The following sets with their usual arithmetic operations are commutative
rings:

• The standard sets of numbers Z, Q, R, and C.

• The polynomials R[x], where R is a commutative ring.

• The integers modulo a natural number, Z/nZ.

In addition, Q, R, C and Z/pZ (for p a prime) are fields.
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Definition 5. Let R and R′ be commutative rings. A function φ : R → R′ is called
a homomorphism if for a, b ∈ R, φ(a + b) = φ(a) + φ(b), φ(a · b) = φ(a) · φ(b), and
φ(1R) = 1R′ . If φ maps R to itself then it is called an endomorphism, and if φ is bijective
then it is called an isomorphism.

Remark 6. Homomorphisms can be thought of as “functions which preserve arithmetic”.
If R and R′ are commutative rings for which there exists an isomorphism φ : R → R′, then
R and R′ can be considered “equivalent” up to relabeling of elements, in the sense that φ
provides a relabeling rule for the elements of R which preserves the arithmetic operations of
the rings.

Definition 7. Let R be a commutative ring. An ideal of R is a nonempty subset I which
is closed under addition with elements in I, and under multiplication with elements in R.

Remark 8. Every nonzero commutative ring R has at least two distinct ideals, the zero
ideal {0} and the unit ideal R. These are the only two ideals of R exactly when R is a
field.

Several additional operations are useful for constructing new ideals from existing ones.

Proposition 9. If I, J are ideals of a commutative ring R, then the following sets are also
ideals:

• I + J , the set of elements {a+ b : a ∈ I, b ∈ J}

• I ∩ J

• I · J , the set of finite R-linear combinations of elements in {a · b : a ∈ I, b ∈ J}

Proposition 10. Let R be a commutative ring, and let A ⊆ R. Then the set of all finite
R-linear combinations of elements in A,

(A) := {r1a1 + . . .+ rkak : k ∈ N, r1, . . . , rk ∈ R, a1, . . . , ak ∈ A}

is an ideal of R.

The ideal described above is called the ideal generated by the finite set A. If A =
{a1, . . . , an} is a finite set, then sometimes the ideal generated by A is instead written
(a1, . . . , an). The term “unit ideal” for the underlying ring R is because (u) = R for any
unit u ∈ R (and moreover, any ideal containing a unit is equal to R).

The following construction is fundamental to much of the upcoming theory.

Proposition 11. Let R be a commutative ring, and let I ⊆ R be an ideal. Then the collection
of additive cosets R/I := {a+ I : a ∈ R} form a commutative ring under the addition and
multiplication rules

• (a+ I) + (b+ I) = (a+ b) + I, and

• (a+ I) · (b+ I) = (a · b) + I.
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These rules are well-defined with respect to the choice of coset representatives, and the com-
mutative ring is called the quotient ring of R by I.

Remark 12. The formalism of the above construction belies a simpler interpretation: the
quotient ring of R by I is the ring obtained from R by interpreting the elements of I as
“equivalent to zero”. If I is the ideal generated by some elements, then these elements are
sometimes called new relations for the quotient ring. For instance, in Z/5Z, the ideal 5Z
of integers divisible by 5 represents the standard integers which are “equal to 0” in the new
quotient. Thus it is fine in this ring to think of the number 12 as 2 + 2 · 5, and since 5 is set
to zero in the quotient ring, it’s okay to ignore it and think of 12 as 2 instead. The formal
definition of a quotient ring means that this interpretation is fine, and nothing goes wrong
with the arithmetic when making this reduction.

Proposition 13. Let φ : R → R′ be a ring homomorphism. Then

• The image of φ, defined by imφ = {φ(r) : r ∈ R}, is a subring of R′

• The kernel of φ, defined by kerφ = {r ∈ R : φ(r) = 0}, is an ideal of R

Theorem 14 (First Isomorphism Theorem). Let φ : R → R′ be a ring homomorphism, and
let π be the projection map R → R/ kerφ given by a 7→ a + kerφ. Then there exists an
isomorphism

ψ : R/ kerφ→ imφ

such that ψ ◦ π = φ. In particular, R/ kerφ ∼= imφ.

Polynomial Roots and Factorization

We next discuss some properties of polynomials over an arbitrary field.

Definition 15. Let R be a nonzero commutative ring. A nonzero element x ∈ R is called
a zero-divisor if there is another nonzero element y ∈ R such that xy = 0. R is called
an integral domain if it has no zero-divisors. An ideal of R is called principal if it is
generated by a single element, and R is called a principal ideal domain if it is an integral
domain and every ideal is principal.

Proposition 16. For any field F , the polynomial ring F [x] is a principal ideal domain.

Lemma 17 (Polynomial Division Algorithm). Let F be a field, and let f, g ∈ F [x] be
polynomials. Then there exist unique polynomials q, r ∈ F [x] with deg r < deg g such that
f(x) = q(x)g(x) + r(x).

Exercise 18. In Q[x], find the quotient and remainder polynomials q and r stipulated in
the polynomial division algorithm for polynomials f(x) = 2x5 − 3x4 − 3x3 + x − 1 and
g(x) = x2 − 3x+ 1.

Lemma 19. If F is a field, then a nonzero polynomial over F is invertible if and only if it
is constant.
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Proof. Let f ∈ F [x] be nonzero. If f = α for nonzero α ∈ F , then it has inverse g = α−1. If
f is non-constant, then it has positive degree, so its product with any nonzero polynomial
must also have positive degree. This precludes the existence of an inverse.

Lemma 20. Let F be a field, let f ∈ F [x] be a polynomial, and let α ∈ F . Then f(α) = 0
if and only if (x− α) divides f .

Proof. If (x−α) divides f , then there is a polynomial g such that f(x) = (x−α)g(x), so we
see that f(α) = (α − α)g(α) = 0. So suppose now that f(α) = 0. Then by the polynomial
division algorithm, there are polynomials q, r ∈ F [x] such that f(x) = q(x)(x − α) + r(x),
where deg(r) < deg(x − α) = 1. Then r(x) is a constant polynomial, r(x) = β for β ∈ F .
Then by assumption, we have

0 = f(α) = (α− α)q(α) + r(α) = β

so β = 0, and we see that f(x) = (x− α)g(x), and thus (x− α) divides f .

Proposition 21. Let F be a field, and let f ∈ F [x] be a nonzero polynomial of degree d.
Then f has at most d roots in F .

Proof. We proceed by induction on the degree of f . If f has degree 0, then it is a nonzero
constant polynomial, and thus has zero roots.

Now suppose that f has positive degree d. If f has no roots, then we are done, so suppose
that α ∈ F is a root of f . By the above lemma, we can write f(x) = (x− α)g(x) where g is
a polynomial of degree d− 1, and by induction, g has at most d− 1 roots.

Since F is a field, it has no zero-divisors, so if f(β) = 0 for some β ∈ F , then either
β = α, or g(β) = 0. Thus the roots of f are α and the roots of g, giving at most d roots in
total.

Definition 22. Let F be a field, and let f(x) =
∑d

n=0 anx
n be a polynomial in F [x]. The

formal derivative of f is the polynomial

f ′(x) =
d∑

n=0

nanx
n−1

Here, the integers n in the formula for the derivative are to be interpreted as the summation
1 + 1 + · · ·+ 1 of n copies of the multiplicative identity in F .

Exercise 23. Let α, β be elements of a field F , and let f, g be polynomials over F . Show
that the formal derivative satisfies the following properties:

• (Linearity) (αf + βg)′ = αf ′ + βg′

• (Product Rule) (fg)′ = f ′g + fg′

• (Chain Rule) (f ◦ g)′ = (f ′ ◦ g)g′

Definition 24. Let F be a field, let f ∈ F [x] be a polynomial, and let α ∈ F . Then α is
called a multiple root of f if (x− α)2 divides f .
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Lemma 25. Let F be a field, let f ∈ F [x], and let α ∈ F . Then α is a multiple root of f if
and only if it is a root of both f and its derivative f ′.

Proof. If α is a multiple root, then we can write f(x) = (x − α)2g(x) for some polynomial
g. Clearly α is a root of f , and we can compute using the chain rule that

f ′(x) = 2(x− α)g(x) + (x− α)2g′(x)

which also has α as a root. For the other direction, suppose both f and f ′ have α as a root.
Then we can write f(x) = (x− α)g(x) for some polynomial g, and we can compute

f ′(x) = g(x) + (x− α)g′(x)

Then we have f ′(α) = g(α) = 0, so we can likewise write g(x) = (x − α)h(x) for some
polynomial h, and so we obtain f(x) = (x− α)2h(x).

Definition 26. Let F be a field, and let f ∈ F [x] be a non-constant polynomial with
coefficients in F . Then f is called irreducible (over F ) if there is no way to write f as a
product of two non-constant polynomials with coefficients in F .

Theorem 27 (Unique Factorization). Let F be a field, and let f be a nonzero polynomial
over F . Then there exist monic irreducible polynomials g1, . . . , gk and a nonzero field element
u ∈ F such that

f = u
k∏

i=1

gi

and this representation is unique up to permutation of the indices.
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