
Worksheet 6 Solutions, Math 1B
Comparison, Ratio, and Root Tests; Alternating Series

Monday, February 27, 2012

1. Determine whether the series converges absolutely, converges conditionally, or diverges:

(a)

∞∑
n=1

n− 1

n4n

Solution Idea

Converges absolutely by the ratio test. The ratio test is a natural test to use, since the terms of the
series contain a constant raised to an exponent, which cancels nicely when comparing consecutive
terms.

(b)

∞∑
n=1

(
n2 + 1

2n2 + 1

)n

Solution Idea

Converges absolutely by the root test. The root test is most helpful here because the nth root
of the test cancels out the nth power in the terms of the series, turning the computation into a
simple limit of a rational function.

(c)

∞∑
n=1

1

n1+1/n

Solution Sketch

Diverges by comparison test with
∑

1
n . The reason that the ratio and root tests are less useful in

this case are because this series is very similar to a p-series (but not a p-series since the exponent in
a p-series must be constant), and the ratio and root tests are not good at determining convergence
or divergence of p-series or similar, often turning up an inconclusive result.

The computation with the comparison test will require finding the limit

lim
n→∞

n1/n.

This limit has value 1, as you should verify by rewriting as

lim
n→∞

exp

(
ln(n)

n

)
and applying L’Hôpital’s rule to the expression in the exponent.

(d)

∞∑
k=1

k

(
2

3

)k

Solution Idea

Converges absolutely by the ratio test.
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(e)

∞∑
n=2

(−1)n

lnn

Solution Idea

Converges by the alternating series test. Does not converge absolutely, since the comparison
theorem with

∑
1
n proves divergence of

∑
|(−1)n/ lnn| =

∑
1

lnn .

(f)

∞∑
n=1

1

n!

Solution Idea

Converges absolutely by the ratio test.

(g)

∞∑
n=1

1 + 4n

1 + 3n

Solution Idea

Diverges by the divergence test, since (1 + 4n)/(1 + 3n) does not converge to 0 as n approaches
infinity. As a rule of thumb, this is the first thing you should check when determining convergence
or divergence of a series, since it is the coarsest test for divergence, and it is often very easy to
check.

(h) 1− 1 · 3
3!

+
1 · 3 · 5

5!
− 1 · 3 · 5 · 7

7!
+ · · ·+ (−1)n−1

1 · 3 · 5 · · · · · (2n− 1)

(2n− 1)!
+ · · ·

Solution Idea

Converges absolutely by the ratio test. When factorials or similar products show up, very often
the ratio test is the easiest way to go, since taking the ratio of consecutive terms cancels all but
one term in a complicated factorial product.

2. If
∑

an is a convergent series with positive terms, is it true that
∑

sin(an) is also convergent?

Solution Idea

This is true. Since sin(x) < x for positive x, we can use the comparison theorem with
∑

an to prove
convergence.

3. If
∑

an and
∑

bn are both convergent series with positive terms, is it true that
∑

anbn is also conver-
gent?

Solution Sketch∑
anbn is also convergent. To see this, notice first that since

∑
bn is convergent, limn→∞ bn = 0,

which means that for large enough n, say n > N for some possibly large N , bn ≤ 1.

Then we can write
∞∑

n=1

anbn =

N∑
n=1

anbn +

∞∑
n=N+1

anbn,

and the prior series converges exactly when the second series on the right-hand side converges. But
for n > N , because we have that bn ≤ 1, we also have that anbn ≤ an, and so we can use the series
comparison test with the convergent series

∑∞
n=N+1 an. This completes the argument.
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4. How many terms of the series
∞∑

n=1

(−1)n

n5n

do we need to add in order to find the sum up to an error of 10−4?

Solution Idea

Check that bn = 1/(n5n) is decreasing to zero (probably easiest to check for f(x) = 1/(x5x), which is
decreasing for positive x), and find the smallest n such that bn+1 ≤ 10−4. This n is sufficient since the
error of the nth partial sum is bounded above by bn+1, by the alternating series estimation theorem.
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