## Worksheet 2 Solutions, Math 1B Trigonometric Substitution

Monday, January 23, 2012

## 1. Evaluate the integral

$$\int \frac{x^3}{\sqrt{4+x^2}} \, dx$$

using trigonometric substitution. Then evaluate it using integration by parts.

Solution Idea

Trigonometric substitution calls for a tangent-type substitution. Integration by parts makes use of the initial factorization  $u=x^2$  and  $dv=x/\sqrt{4+x^2}dx$ .

## 2. Evaluate the following integrals:

(a) 
$$\int_0^1 x \sqrt{x^2 + 4} \, dx$$

Solution

We use a tangent-type substitution,  $x = 2\tan(\theta)$  (where  $-\pi/2 < \theta < \pi/2$ ), which gives us  $dx = 2\sec^2(\theta)d\theta$ , and

$$\int_0^1 x \sqrt{x^2 + 4} \, dx = \int_{x=0}^{x=1} (2\tan(\theta)) \sqrt{(2\tan(\theta))^2 + 4} \, (2\sec^2(\theta)) \, d\theta$$

$$= 8 \int_{x=0}^{x=1} \tan(\theta) \sqrt{\tan^2(\theta) + 1} \sec^2(\theta) \, d\theta$$

$$= 8 \int_{x=0}^{x=1} \tan(\theta) \sqrt{\sec^2(\theta)} \sec^2(\theta) \, d\theta = 8 \int_{x=0}^{x=1} \tan(\theta) \sec^3(\theta) \, d\theta$$

From this we can use a simple substitution  $u = \sec(\theta)$  to find a value of

$$\left. \left(8\sec^3(\theta)/3\right) \right|_{x=0}^{x=1}.$$

Using a right triangle to represent the substitution  $x = 2\tan(\theta)$ , we find that  $\sec(\theta) = \sqrt{x^2 + 4}/2$ , and so the final result is

$$\left( (x^2+4)^{3/2}/3 \right) \Big|_{x=0}^{x=1} = (\sqrt{125}-8)/3.$$

Alternatively, a simpler solution uses substitution with  $u = x^2 + 4$ .

(b) 
$$\int \sqrt{5+4x-x^2} \, dx$$

Solution Idea

Completing the square yields

$$\int \sqrt{5+4x-x^2} \, dx = \int \sqrt{9-(x-2)^2} \, dx,$$

which calls for a sine-type substitution after first substituting u = x - 2.

(c) 
$$\int_0^a x^2 \sqrt{a^2 - x^2} \, dx$$

Solution Sketch

A first quick substitution of u = ax gives

$$\int_0^a x^2 \sqrt{a^2 - x^2} \, dx = a^4 \int_0^1 u^2 \sqrt{1 - u^2} \, du,$$

and from here a sine-type substitution gives us an integral of the form

$$\int \sin^2(\theta) \cos^2(\theta) d\theta.$$

Several applications of the half-angle formulas allow a solution.

(d) 
$$\int \frac{x^2}{9 - 25x^2} dx$$

Solution Idea

A substitution of  $x = (3/5)\sin(\theta)$  makes this tractable.

(e) 
$$\int \frac{1 - \tan^2 x}{\sec^2 x} \, dx$$

Solution Idea

Converting into sines and cosines and simplifying shows that this integral is actually equal to

$$\int \cos(2x) \, dx.$$

$$(f) \int_0^{\pi/2} \frac{\cos t}{\sqrt{1+\sin^2 t}} dt$$

Solution Idea

Make an initial substitution of  $u = \sin(t)$  to turn this into a usual trig substitution integral, which is amenable to a tangent-type substitution.

3. A torus is generated by rotating the circle  $x^2 + (y - R)^2 = r^2$  about the x-axis. Find the volume enclosed by the torus.

Solution Idea

The cross-section of the circle at a given value of  $x \in [-r, r]$  goes from  $R - \sqrt{r^2 - x^2}$  to  $R + \sqrt{r^2 - x^2}$ , and so the cross-sectional area of the solid of revolution is given by

$$\pi(R + \sqrt{r^2 - x^2})^2 - \pi(R - \sqrt{r^2 - x^2})^2$$
.

Then the overall volume is an integral over all the values of x of the cross-sectional area, which is

$$V = \int_{-r}^{r} \pi (R + \sqrt{r^2 - x^2})^2 - \pi (R - \sqrt{r^2 - x^2})^2 = 4\pi R \int_{-r}^{r} \sqrt{r^2 - x^2}.$$

This can be solved using a simple sine-style trig substitution, but alternatively we can see that the integral is equal to the area above the x-axis of the circle of radius r centered at the origin, which is  $(\pi r^2)/2$ . This gives us a final volume of  $2\pi Rr^2$ .