
Math 1A Quiz Ch. 4

November 4, 2013

1. (8 pts) Define a “critical number” of a function f . Sketch the graph of the function
f(x) = |x| · (x + 2), and find its critical numbers. Find the absolute maximum and
absolute minimum values of f on the interval [−2, 1].

Solution

A critical number of a function f is a number x in the domain of f such that either
f ′(x) = 0 or f ′ is undefined at x.

The graph of f looks like:

In particular, f is not differentiable at x = 0, so this is a critical number of f . Addi-
tionally, for x < 0 we have |x| = −x, and for x > 0 we have |x| = x, so that means
that

f(x) =

{
x2 + 2x x ≥ 0

−x2 − 2x, x < 0
, and f ′(x) =

{
2x+ 2, x ≥ 0

−2x− 2, x < 0
.

Thus we have one additional critical number, x = −1 where f ′(x) = 0.

To find the absolute max and min of f , we need to check the value of f at its critical
numbers and the boundaries of the domain, that is, x = −2, x = −1, x = 0 and x = 1.
This gives us

f(−2) = 0, f(−1) = 1, f(0) = 0, and f(1) = 3.

Thus we have that the absolute minimum of f is 0, achieved at x = −2 and x = 0,
and the absolute maximum of f is 3 at x = 1.
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2. (12 pts) Show that the equation x3 + ex = 0 has exactly one real root.

Solution

The function f(x) = x3+ex is differentiable anywhere since it is the sum of a polynomial
and an exponential function, so it is also continuous everywhere. In particular, we have
that f(−1) = −1 + 1/e < 0, and f(0) = 1 > 0, so by the intermediate value theorem,
since f is continuous on [−1, 0], we know that there must be a point c ∈ (−1, 0) such
that f(c) = 0. Thus f has at least one real root.

Now suppose by way of contradiction that f has at least two real roots, call them a < b.
Then f is continuous on [a, b] and differentiable on (a, b), so by the mean value theorem,
we know that there is a number d ∈ (a, b) such that f ′(d) = (f(b)− f(a))/(b− a) = 0.
But we know that f ′(x) = 3x2 + ex > 0 for all real x, so it can’t be the case that
f ′(x) = 0 for any real x. This gives us a contradiction, so we can conclude that our
assumption that f has at least two real roots must have been false.

Thus we have shown that f has at least one real root, and that it also has at most one
real root, and so we see that f has exactly one real root.
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3. (10 pts) Let f(x) = x3 − 12x+ 2.

(a) Find the intervals of increase or decrease of f .

(b) Find the local maximum and minimum values.

(c) Find the intervals of concavity and the inflection points.

(d) Use the information you found to sketch the graph of f . (Don’t worry about
finding the precise roots of f .)

Solution

We have f ′(x) = 3x2 − 12, and f ′′(x) = 6x.

f is increasing on intervals where f ′(x) > 0 and decreasing on intervals where f ′(x) <
0, so that means that f is increasing on the intervals (−∞,−2) and (2,∞), and is
decreasing on the interval (−2, 2).

Since f is differentiable everywhere, if f has a local extreme value at x, we must have
f ′(x) = 0. This only occurs at x = ±2. Looking at the signs of the first derivative shows
us that x = −2 is a local maximum and x = 2 is a local minimum, but we can get this
information directly by looking at the sign of the second derivative: f ′′(−2) = −12 < 0
and f ′′(2) = 12 > 0.

Finally, f is concave up on intervals where f ′′(x) > 0 and concave down on intervals
where f ′′(x) < 0, and has an inflection point where the second derivative changes sign
(and f is continuous). Thus f is concave down on (−∞, 0) and concave up on (0,∞),
and f ′′(x) changes sign at x = 0 which means that f has an inflection point at x = 0.

We also notice that f(0) = 2, and f(x) tends to −∞ as x → −∞, and to +∞ as
x→ +∞. Thus the graph of f looks like:
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4. (6 pts) Use L’Hospital’s Rule to evaluate the limit:

lim
x→0+

x
√
x

Solution

Naively plugging in values to this limit gives an expression of the form 00, which is
not an indeterminate form of the correct form to use L’Hospital’s Rule, so we need to
rewrite the expression. We have

x
√
x = eln(x)

√
x

so since the exponential function is continuous everywhere, if ln(x)
√
x has a finite limit

L, then xsqrtx has finite limit eL.

Taking limits as x→ 0+ of this expression gives us −∞ · 0, which is now a multiplica-
tive indeterminate form. Rewriting it as ln(x)/x−1/2, we get the indeterminate form
−∞/∞, so now we can use L’Hospital’s Rule.

Looking at the limit of the ratio of derivatives, we have

lim
x→0+

x−1

−1/2 · x−3/2
= lim

x→0+
−
√
x/2 = 0,

so by L’Hospital’s Rule, we know that limx→0+ ln(x)
√
x exists, and also has value 0.

Thus we conclude that limx→0+ x
√
x = e1 = 1.
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5. (6 pts) A cylindrical can without a top is made to contain a particular volume V cm3

of liquid. Find the dimensions that will minimize the cost of the metal to make the
can.

Solution

Let r be the radius of the cylinder, and let h be the height of the cylinder. Both param-
eters must be positive values. Then the surface area of the can is roughly proportional
to the volume of metal used to make the can, and is equal to 2πrh, the area of the
cylinderical sides, plus πr2, the area of the circular bottom, or

A = 2πrh+ πr2.

Additionally, if we want to require that the can contains volume V , then we have
V = πr2h, which gives us

h = V/(πr2).

Plugging into the expression for area, we find that, as a function of radius, we must have
A(r) = 2V/r+πr2. Taking a derivative, we find A′(r) = −2V/r2+2πr, so A has a single
critical number r = 3

√
V/π. Taking a second derivative, we find A′′(r) = 4V/r3+2π, so

the second derivative at r = 3
√
V/π is 6π > 0, meaning that this gives a local minimum

of A.

We also see that A tends to +∞ as r → 0+ and as r → +∞, so we conclude that
r = 3

√
V/π is the radius that will minimize the value of A. This value of r corresponds

to a height h = 3
√
V/π.
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